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ABSTRACT

This study explores the numerical solutions of an influenza epidemiological model, specifically the SEIR
(Susceptible, Exposed, Infected, and Recovered) type, which is represented by a system of nonlinear differential
equations. Three numerical methods were applied to solve this model: the Euler method, Heun’s method, and
the fourth-order Runge-Kutta (RK4) method. The solutions obtained from these numerical methods were
compared to the reference solution from ODE45, as the exact solution of the SEIR model remains unknown.
Numerical simulations revealed that using either a very large step size (h = 0,5) or a very small step size
(h = 0,001) led to significant numerical errors. Among the five different step sizes tested, h = 0,1 provided
the most accurate results. Based on the average computational time across different step sizes, the Euler
method was the fastest, while RK4 was the slowest. However, the Euler method exhibited the largest error
margin, whereas Heun’s and RK4 methods produced comparable errors. Although Heun’s method had the same
error margin as RK4, it required less computational time, making it the most efficient choice for this case.
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INTRODUCTION

In the history of living creature, numerous diseases have emerged, some spreading widely and
become epidemics affecting both human and animal population. Some of the most severe global
outbreaks documented in history include: the polio epidemic in the United States in 1916 (Hv, 2014),
the Ebola outbreak in West Africa from 2014 to 2016 (Kamorudeen et al., 2020), the COVID-19
pandemic beginning in 2020 (Wu et al., 2020), the HIV/AIDS pandemic worldwide (The Lancet, 2017),
the Spanish influenza (Martini et al., 2019), the avian influenza (Charostad et al., 2023), the swine
influenza (Mena et al., 2016), and the Hong Kong influenza (Jester et al., 2020). These diseases have
spread on a large scale, with some still lacking a definitive cure.

Among the outbreaks, influenza is one the most frequently mentioned diseases. For human,
influenza is highly contagious and potentially can lead to fatal outcomes in certain case. Its transmission
is primarily caused by influenza viruses, which are RNA viruses belonging to the family
Orthomyxoviridae (Liang, 2023). Influenza outbreaks typically occur during the winter season. The virus
is spread through respiratory droplets expelled during when an infected person sneezes, coughs, or
speaks (Richard & Fouchier, 2016). Symptoms of influenza include high fever, body aches, headaches,
severe malaise, dry cough, sore throat, and runny nose (Moghadami, 2017). The virus can infect
individuals across all age groups, from children to adults (Griggs et al., 2022).

To understand the dynamics of disease transmission, mathematical models can be employed,
particularly for influenza. These models are referred to as mathematical epidemiological models.
Numerous researchers have contributed to the development of epidemiological models for influenza.
Notable studies include the SIRS-type influenza model incorporating vaccination strategies for
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susceptible individuals (Kharis & Cahyono, 2015), the mathematical analysis of an influenza A (H1N1)
epidemic model with discrete delay (Krishnapriya et al., 2017), the modelling of the H5N1 influenza
virus alongside optimal control strategies utilizing the Pontryagin maximum principle (Gourram et al.,
2023), the modelling influenza A disease dynamics under Caputo-Fabizio fractional derivative with
distinct contract rates (EVIRGEN et al., 2023), and an optimal control analysis for the HIN1 influenza
model applying the Pontryagin minimum principle (Rahmadhania & Arif, 2020).

The epidemiological model can be characterized as a nonlinear system governed by first-order
ordinary differential equations. Our focus is on solving the influenza model, which presents a nonlinear
system coupled with an initial value problem. Obtaining exact solutions for nonlinear differential
equations can be challenging; therefore, we employ numerical methods for this purpose. Three of
famous numerical methods used are Euler, Heun, and fourth-order Runge-Kutta method. Some of
notable work with these methods are: the test of stability and consistency of Heun method for SEIR
type dengue fever (Novalia & Nasution, 2018); using Euler and Heun method to solve COVID-19
epidemiological model (Pratiwi & Mungkasi, 2021); using fourth-order Runge Kutta to solve monkeypox
epidemiological model (Ludji & Buan, 2023), using fourth-order Runge-Kutta and Adam-Bashforth-
Moulton to solve SIR epidemiological model (Setiawan & Mungkasi, 2021), using fourth-order Runge-
Kutta to solve spreading of COVID-19 in Indonesia (Rahmadhani et al., 2023); using fourth-order and
45t order Runge-Kutta numerical method to solve influenza model (Mohammed & Mohammed, 2021)
and using of Euler, Heun, and RK4 solutions to SEIR model for meningitis disease’s spread (Hurit &
Sudi Mungkasi, 2021).

In this study, we employ three well-established numerical methods: Euler, Heun, and the fourth-
order Runge-Kutta method. Our objective is to compare these methods to determine which provides
the fastest computation time and the lowest error margin, particularly in the case of the influenza model.
To identify the method with the lowest error margin, we compare the numerical solutions with the
reference solution obtained from the ODE45 algorithm in Python.

METHOD
Type of Research

This study applies two research approaches: numerical computation and simulation. In the
numerical computation phase, three methods are applied: the Euler method, the Heun method, and
the fourth-order Runge-Kutta method. Simulations are conducted to analyze the behavior of the
influenza model. Additionally, we use the reference solution from the ODE45 algorithm in Python to
compare it with the solutions obtained from these three numerical methods. The research process
consists of the following steps:
1) Developing an SEIR-type influenza model;
2) Solving the model using the Euler, Heun, and fourth-order Runge-Kutta methods in Python;
3) Simulating the model with these numerical methods along with ODE45 in Python; and
4) Analyzing the results from the numerical solutions and simulations.

RESULTS AND DISCUSSION
SEIR Model for Influenza

In this study, we developed an epidemiological model for influenza using the assumptions
outlined in Table 1. The model follows the SEIR type for influenza.
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Table 1. Variables and Parameter Assumptions in SEIR Influenza model
Symbol Description

S(t)  Susceptible population: Individuals who are healthy but at risk of being exposed to or
infected by the influenza virus.

E(t) Exposed population: Individuals who have been exposed to the influenza virus and are
at risk of progressing to the infected state.

I(t) Infected population: Individuals currently infected with influenza. Infected individuals
may recover from the disease.

R(t)  Recovered population: Individuals who have recovered from influenza, transitioning from
the exposed or infected state. Recovered individuals may return to the susceptible
population over time.

B Contact rate leading from the susceptible to the exposed population.

U Natural mortality rate

r Birth rate

) Rate at which immunity is lost, leading recovered individuals to become susceptible
again

o Average duration of the latent period before exposed individuals become infected.

K Recovery rate for the exposed population.

a Influenza-induced mortality rate.

y Mean recovery time for infected population

N Total population size.

Based on the information presented in Table 1, we can construct the compartment diagram
shown in Figure 1 as follows:
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Figure 1. Compartment Diagram for SEIR Type Influenza Model

All parameters listed in Table 1 are assumed to be greater than zero. Based on these
assumptions and the compartment diagram presented in Figure 1, we construct the mathematical
model for the influenza disease as follows:

A _ Sl e N+ 6R (1)
dt BN po T
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The total population (N) is defined as the sum of the susceptible, exposed, infected, and
recovered populations. This relationship can be expressed mathematically using Equation (2).

N(t) =S(t)+E(t) +1(t) +R(t) (2)

The total population derivative with respect to time can be determined from equation 2 as follow:

dN _dS dE dI dR aN
dt _de Tdt Tdr ar | H or g THYET (3)

Equation (3) is a first-order linear equation. To solve it, we can multiply by an integrating factor

and then integrate (Bronson & Costa, 2006). The form of Equation (3) with its integrating factor is shown
in Equation (4).

dN(t d(e*N(t
et d£)+#e“tN(t)=Te“t or T dt())”e“ )

By applying integration to Equation (4), we arrive at the solution expressed in Equation (5):

N(t) = i + Ce#t with C is constant (5)
when t = 0, we can determine C as follows:

C=N(©) -~
U

This allows us to reformulate Equation (5) as

N(E) = % + (N(O) - %) eht
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This solution indicates that the total population is not constant but changes over time. In the
limit as time approaches infinity (¢t — o), we find gim N(t) = % This result implies that the total

. r
population converges to "

Euler Method

The Euler method has a simple algorithm for computing numerical solutions. Euler method is
first order method derived from linear term of Taylor series. The Euler method is also considered a first-
order Runge-Kutta method.

Algorithm of Euler method (Munir, 2021):

ki = hf (Xn, Yn)
Yn+1 = Yn + Ky
with h is interval length, f'(x,,, y,,) is differential value at (x,,, ¥,), k; is predictor, y;, is value for n

step, and y,, .4 is prediction of next value.
With Euler method algorithm, the influenza model from equation (1) turn as follows:

Siv1 = S; + ksy (6)
Eiy1 =E; + keg (7)
liy1 = I; + kiy (8)
Riy1 =Ry + kny (9)

with,
SI
kSl = hfl(ti,Si, Ii, Rl) = h<—ﬁﬁ - ‘LlS +rN + SR)

SI
key = hfy(to S0 B 1) = h (B — (u + 0 + 0 )

kiy = hfs(t, Ei, I;}) = h(0E — (u + a +y)I)
le = hﬁl-(tll Ei’Iil Rl) = h(KE + ]/I - ,LLR - 6R)

In this context S;.1, Ei+1, li+1, Ri+1 represent the equations used to calculate the number of
individuals in the susceptible, exposed, infected, and recovered populations for the next iteration (or
the following day). The term ks, keq, ki, kr; are derived from the Euler method and correspond to
equations (6), (7), (8), and (9) in sequence.

Euler's method has local truncation error O(h?) and global truncation error O(h). The
truncation error derived from h interval length. The smaller value of h, the smaller error truncation in
calculation.
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Heun Method

The Heun method is a more complex algorithm than Euler's, as it is a modification of the Euler
method. The heun’s method used second order method to solve differential equation numerically.
Heun’s method can be derived from Taylor series with more term of Euler method. With the modification
of Euler’s, Heun’s is more accurate algorithm. Heun's method can be described as a second-order
Runge-Kutta method.

Algorithm of Heun method (Munir, 2021):

ky = hf(xnr Yn)
ky = hf (xn + h, Y + k1)

1
Yn+1 = Yn T E(kl + kz)

with h is interval length, f (x,,, v,,) is differential value at (x,, y,), k4 is predictor, k, is corrector for
next value, y,, is value for n step, and y,, ., is prediction of next value.
With the Heun’s method, Influenza model from equation (1) can be described as follow:

Sty = i+ % (ks, + ksy) (10)
Euvs = B+ (ke + ke) (1)
Loy =1, + % (kiy + ki) (12)
Riys = R+ 5 (kry 4 kry) (13)

with,
SI
kSl = hfl(ti,Si, Ii, Rl) = h<—ﬁﬁ - ‘LlS +rN + SR)

SI
key = hfy (60 S B ) = h (B = (u + 0 + 0)F)

kiy = hfs(t;, Ep ;) = h(oE — (u+ a +y)I)
le = hﬁl-(tll Ei’Iil Rl) = h(KE + ]/I - ,LLR - 6R)

ks, =h (—%(Si + hks;)(I; + hkiy) — u(S; + hks;) +rN + §(R; + hkr1)>

ke, =h (—%(Si + hks;)(I; + hkiy) — (u+ o + k) (E; + hkel)>
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ki, = h(o(E; + hke,) — (u + a + y)(I; + hkiy))
k52 = h(K(El + hkel) + )/(Il + hkll) - ,U(Rl + hkrl) - 6(Rl + hkrl))

Similar to Euler method, in this context S;.1, Ei+1, I;+1, R;+1 represent the equations used to
calculate the number of individuals in the susceptible, exposed, infected, and recovered populations
for the next iteration (or the following day). The term ksy, keq, ki, kry, ks,, ke,, ki, kr,are derived
from the Heun method and correspond to equations (10), (11), (12), and (13) in sequence.

Heun's method has a local truncation error O(h®) and global truncation error O(h?).
Theoretically, Heun has less error than Euler method.

Fourth-order Runge-Kutta Method

The Runge-Kutta method is widely used to solve both linear and nonlinear differential equations.
In this study, we applied the fourth-order Runge-Kutta (RK4) method to compare with the Euler and
Heun methods.

Algorithm of RK4 method (Munir, 2021):

ki = hf (X Y,)
1 1
ky = hf (o + 5 oy + 5 K1)
1 1
ks = hf (o +5 by +52)
ks = hf Cn + b o + k3)

1
Yn+1 =Yn t+ E(kl + 2k, + 2k3 + ky)

with the RK4 method, influenza model from equation (1) can be described as follow:

1
Si+1 = Si + g(ksl + 2k52 + 2k$3 + kS4,) (14)
1
Ei+1 = Ei + g(kel + 2k82 + 2k83 + k84) (15)
1 . . . .
Ii+1 = Ii + g(kll + Zklz + 2kl3 + kl4) (16)
1
Ris1 =R; + A (kry + 2kry, + 2kry + kry) (17)

With,
S1
kSl = hfl(tiJSiJ Il', RL) =h (—ﬁﬁ - ‘LlS +rN + 6R)

SI
kel = hfZ(tiJSi!EiJIi) = h(ﬁﬁ— (,Ll + o0+ K')E)
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kiy = hfs(t, Ep ;) = h(0E — (p+a +y)D)
kT'l = hﬁ]_(ti, Ei!Iii Rl) = h(KE +]/I - [lR - 6R)

ks, = h (t+h5+hk I+hk'R+hk)
s, =hf | t; 2;1‘ 251'1' 211'1' 27'1

—h ﬁ(s "y )(1 hk') (5 hk) N 5(R hk)
= N i+§ S1 i+E 4 u i+§ S1]+7rN+ i+E g1

h h h h .
ke, = hf(ti +E,Si +Ek51,Ei +§k€1,1i +§kll)

B h ho h
=h _N(Si-l'zksl)(li"'zkll)_(M+O-+K)(Ei+§kel>
_ h ok ho h ho
klz=hf(ti+EJEi+§kel'1i+Ekl1)=h’ G(El+Ek€1>_(ﬂ+a+y)<ll+§kl1>

h  h ho h
kSz = hf (ti +E,Ei +Ek€1,li +Ekl1,Ri +Ek7‘1>

h h h h
=h K'(Ei +§ke1) +y(1i +§ki1) —,u(Rl- +Ekr1) —S(Ri +Ekr1)

h h h . h
kS3 :hf(tl“l‘z,sl“l‘EkSZ,Ii+Eklz,Rl’+Ek7‘2)
p h h h h
:h(_ﬁ<si+§ksz)(,i+§klz)_M(Sﬁzksz)wm(&+§kr2))
h h h h_ .
ke3 = hf<ti+§’Si+EkSZ'El' +Ek€2,1i+§kl2>
p h h . h
=h(—ﬁ<5i+§ksz)(li+Ek12)—(,u+a+ic)(Ei+§ke2>>

h h h h h
ki; = hf(t; +§'Ei +Ekez,li +Eki2) = h<a(El- +§ke2> —(u+a+y) (Il- +§ki2))

h h ho h
kS3 = hf (tl +E,Ei +Ek€2,[l' +Ekl2,Rl’ +Ek'r‘2)

h h h h
=h K<Ei +§k82> +y(Il- +Eki2> —,u(Rl- +§kr2> —S(Rl- +Ekr2)

kS4 = hf(tl + h, Si + hkSg,Ii + hki3,Ri + hkT3)
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ke, = hf (t; + h,S; + hkss, E; + hkes, I; + hkis)

=h (—%(Si + hks3;)(I; + hkiz) — (u+ 0 + k) (E; + hke3)>

ki, = hf (t; + h, E; + hkes, I; + hkis) = h(o(E; + hkes) — (u + a +y)(; + hkis))

kr, = hf (t; + h,E; + hkes, I; + hkis, R; + hkrs)
= h(k(E; + hkes) + y(I; + hkiz) — p(R; + hkrs) — 8(R; + hkrs))

Like Euler and Heun method, in this context S;, 1, E;+1, I;+1, Ri+1 represent the equations
used to calculate the number of individuals in the susceptible, exposed, infected, and recovered
populations for the next iteration (or the following day). The term ks, ke;, kiy, kry, ks,, ke,, ki,,
kry, kss, kes, kis, krs, ks,, ke,, ki,, kr, are derived from the RK4 method. The term
ksi, ks,, kss, ks, are derived to correspond to equations (14), the term ke, ke,, kes, ke, are
derived to correspond to equations (15), the term ki, ki,, kis, ki, are derived to correspond to
equations (16), and the term kry, kr,, krs, kr, are derived to correspond to equations (17) in
sequence.

Numerical Computation and Simulation

In this section, we present the results of the computations and simulations using Python. The
initial values and parameter settings for the simulation are provided in Table 2. The initial values S,
Ey, Iy, Ry were assumed, and the parameter values were taken from (Mohammed & Mohammed,
2021). The simulation was run for 200 days with three interval time steps of h (0,1; 0,01; and 0,2).

Table 2. Variables and Parameters Value

Parameters  Value of parameters Unit Source

B 0.5020000 [day Mohammed & Mohammed, 2021
U 0.0003671 [day Mohammed & Mohammed, 2021
r 0.0006762 [day (Mohammed & Mohammed, 2021)
é 0.0027400 [day (Mohammed & Mohammed, 2021)
o 0.6990000 [day Mohammed & Mohammed, 2021
K 0.0001500 [day Mohammed & Mohammed, 2021
a 0.0300000 [day Mohammed & Mohammed, 2021
y 0.3600000 [day Mohammed & Mohammed, 2021
So 40 individu Assumption

E, 15 individu Assumption

I, 25 individu Assumption

Ry 20 individu Assumption
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This section presents three figures from the simulation. Figure 2 through 4 compare of the
solutions obtained from the ODE45, Euler, Heun, and RK4 numerical methods, with each compartment
displayed in separate subplots for clearer analysis. Each figure uses a different time step: Figure 2
uses h = 0,2; Figure 3 uses h = 0,1; and Figure 4 uses h = 0,01. The ODE45 algorithm is used
as a reference since the exact analytical solution for the SEIR model remains unknown. We set the
relative tolerance and absolute tolerance 2,3 x 10~1* for ODE45, as the value is close enough to
minimum allowable value for ODE45 algorithm in Python, which is 2.220446049250313 x 10714,
These tolerance values were chosen to ensure that the reference solution from ODE45 is accurate and
reliable.

Susceptible Exposed
80 ] —&— ODE45 1301 “‘ —a&— ODE45
--m- Euler 12.5 H 1 --m- Euler
Heun Heun
5 60 RK4 & 100 RK4
® S 75
3 =
[=% [=3
€0ln & 5.0
7 2.5
20 | 0.0 -
0 50 100 150 200 0 50 100 150 200
Time (days) Time (days)
Infected Recovered
25 7
70
20 - 604
S 154 s
£15 £ 504
3 E
2107 240
5 - 30
0 20
0 50 100 150 200 0 50 100 150 200
Time (days) Time (days)
Figure 2. Simulation of SEIR Type Influenza Model with ODE45, Euler, Heun, and RK4 Method with
h=0,2

Figure 2 separates the graphs for each compartment (Susceptible, Exposed, Infected,
Recovered) to illustrate the solutions obtained from ODE45, Euler, Heun, and RK4. Here the analysis
of simulation:

1. Susceptible graph: All numerical methods (Euler, Heun, and RK4) produce similar results, showing
an initial decrease in the susceptible population during the first few days, followed by a consistent
increase over time. This trend is primarily due to recovery processes and population growth from
the birth rate (7). Over time, all numerical methods gradually diverge from the ODE45 solution.

2. Exposed graph: All methods consistently predict a sharp decline in the exposed population early
in the simulation, reaching very low values around day 20 and eventually stabilizing near zero. The
ODE45 solution and numerical methods overlap after reaching these low values.
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3.

Infected graph: All methods show a decreasing trend in the infected population, eventually
approaching zero. The numerical solutions closely follow the ODE45 solution.

Recovered graph: The recovered population follows a similar trend across all methods, initially
increasing and then gradually decreasing after reaching its peak. This decline occurs as the
number of infected individuals decreases. Over time, all numerical methods diverge from the
ODE45 solution.
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Figure 3. Simulation of SEIR Type Influenza Model with ODE45, Euler, Heun, and RK4 Method with

h=0,1

Figure 3 presents separate graphs for each compartment (Susceptible, Exposed, Infected,

Recovered) and compares the results of different methods: ODE45, Euler, Heun, and RK4. Below is
the analysis of the simulation:

1.

Susceptible graph: All methods produce highly similar results, showing a consistent trend of an
increasing susceptible population over time after an initial decline in the first few days. After days
12-13, the susceptible population increases rapidly.

Exposed graph: All methods consistently predict a sharp decline in the exposed population early
in the simulation, reaching very low values after 20 days.

Infected graph: All methods demonstrate that the infected population decrease from day 1 to nearly
zero.

Recovered graph: the trend of the recovered population shows comparable increases across all
methods, followed by a gradual decrease after reaching its peak at day 18-19. The number of
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recovered individuals declines because there are no longer infected individuals available to
recover.
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Figure 4. Simulation of SEIR Type Influenza Model with ODE45, Euler, Heun, and RK4 Method with

h=0,01

Figure 4 illustrates separate plots for each compartment (Susceptible, Exposed, Infected,

Recovered) to present the simulation results from different methods: ODE45, Euler, Heun, and RK4.
The following is an analysis of the simulation results:

1.

Susceptible graph: All numerical methods (Euler, Heun, and RK4) produce similar results, showing
a consistent trend of a slow increase in the susceptible population over time after an initial decline
in the first 100 days. Over time, all numerical methods diverge significantly from the ODE45
solution, where the numerical methods predict populations near zero, whereas ODE45 projects a
continuous increase.

Exposed graph: All methods consistently predict a sharp decline in the exposed population early
in the simulation, reaching very low values around day 10 and eventually stabilizing near zero. The
graphs of the ODE45 solution and numerical methods overlap after reaching these low values.
Infected graph: All methods show a rapid decline in the infected population, approaching nearly
zero by day 20. The numerical solutions closely follow the ODE45 solution.

Recovered graph: The trend of the recovered population shows comparable increases across all
numerical methods, followed by a gradual decrease after reaching its peak. Over time, all numerical
method graphs diverge from the ODE45 solution, where the numerical methods predict a slow
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decrease after day 180, whereas ODE45 predicts a sharp drop in the recovered population after
day 20.

From simulations in Figure 2-4, all methods (ODE45, Euler, Heun, and RK4) show similar
behaviour in modelling influenza dynamics. However, the accuracy of numerical methods depends on
the time step size. With time step h = 0,1, Figure 3 shows that the ODE45 solution graph slightly
close to all numerical method graph. On the contrary, for larger (h = 0,2 in Figure 2) and smaller (h =
0,01 in Figure 4) time steps, the ODE45 solutions for the susceptible and recovered compartments
deviate significantly from the numerical solutions, indicating higher numerical errors. This suggests that
selecting an appropriate time step is crucial for achieving accurate numerical approximations.

Table 3 presents the mean error tabulation for the solutions obtained from the Euler, Heun, and
RK4 methods compared to ODE45 solution over the first 200 days of simulation. We use five different
time step sizes (h = 0,5; 0,2; 0,1; 0,01; 0,001) to assess consistency of numerical method based
on various time step sizes.

Table 3. Mean Error of Euler, Heun, and RK4 compared to ODE45 Solution

h §tep Method Variable

size Susceptible Exposed Infected Recovered
0,5 Euler 12,73233 10,77759 23,13808  28,47393
Heun 12,73201 10,77819 2313748  28,47434

RK4 12,73201 10,77818 2313748  28,47434

0,2 Euler 16,58304 0,138288 0,407288  13,91492
Heun 16,63231 0,134803 0,401667  13,94410

RK4 16,63184 0,134902 0,401643  13,94380

0,1 Euler 0,055785 0,003236 0,006700  0,057456
Heun 0,009625 0,000182 0,000415  0,008492

RK4 0,009775 0,000135 0,000402  0,008587

0,01 Euler 19,33680 2,403618 7,130431 19,72220
Heun 19,32983 2,406811 7,135293  19,71715

RK4 19,32983 2,406807 7,135294  19,71715

0,001 Euler 38,15406 0,317895 0,825156  30,56113
Heun 37,38100 0,311924 0,815500  29,52708

RK4 37,39202 0,312250 0,815429  29,54330

Table 3 also compares the mean error for all numerical methods for five different time step sizes.
When h = 0,1, the errors from Heun and RK4 are nearly identical, meanwhile Euler's method exhibits
the highest error. Simulations with A = 0,5; 0,2; 0,01; and 0,001 indicate that the errors from all
three numerical method are not significantly different. Although h = 0,001 is smallest time step, it
does not present the most accurate results; instead, it leads to increased numerical errors compared
to h = 0,1, suggesting that h = 0,1 provides the best accuracy.

The results of mean error for numerical method from Table 3 indicates that A = 0,1 provides
the most accurate solution compared to smaller and larger time steps. This observation can be
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ained by several numerical factors, including rounding error, truncation error, and numerical

stability, as discussed below (Chapra & Canale, 2015):

1.

Accumulation of rounding error: Smaller h values require significantly more iterations. Each
iteration produces minor rounding error from computation, especially with floating-point number
type. When h is very small, the accumulation of these rounding error from significant iterations
potentially reduces the computational accuracy.

Optimal h value for balancing accuracy and efficiency: All three numerical methods produces both
truncation error and rounding error. When h is too small, rounding errors increased, meanwhile h
is too large results in higher truncation errors. In this case, h = 0,1 likely the optimal interval that
balances both truncation and rounding errors.

Numerical stability issues: The Euler, Heun, and RK4 methods are explicit numerical schemes,
which may exhibit numerical instability under certain conditions. Since Euler and Heun are first

order and second order of Runge-Kutta, they share similar error characteristics.

Table 4 summarizes the execution times for each method across three interval settings. The
algorithms run in Python using Visual Studio Code, with four repeated trials for each method.

Table 4. Execution Times of Euler, Heun, and RK4 (in second)

h ste Trial Number
sizesp Method 1 2 3 4 Mean
0,5 Euler  0,024176121 0,015631199 0,015628815 0,015630007 0,017766536
Heun  0,025823116 0,026811123 0,038139343 0,033630371 0,031100988
RK4  0,068858385 0,055656672 0,051197529 0,056714058 0,058106661
0,2 Euler  0,045193434 0,013328075 0,012529850 0,016000509 0,021762967
Heun  0,047188759 0,045158625 0,050793648 0,040214300 0,045838833
RK4  0,086301804 0,089160681 0,128798962 0,083012819 0,096818567
0,1 Euler  0,011697054 0,009056330 0,012862921 0,014721870 0,012084544
Heun  0,052272797 0,047997236 0,036287785 0,035549164 0,043026746
RK4  0,079683781 0,085564852 0,066128492 0,091261864 0,080659747
0,01 Euler  0,011799574 0,015130520 0,012326479 0,018214226 0,014367700
Heun  0,042677879 0,047042847 0,068734646 0,051344633 0,052450001
RK4  0,077005148 0,113099337 0,126967192 0,117500067 0,108642936
0,001 Euler  0,033812046 0,021074772 0,006532907 0,027625561 0,022261322
Heun  0,063572645 0,035370588 0,056935549 0,052709818 0,052147150
RK4  0,140364885 0,105368614 0,115224838 0,109085560 0,117510974

Across all running tests (1-4) in Table 4, the Euler method consistently proves to be the fastest
algorithm, while RK4 requires more time to execute compared to the other methods. For each method,
an interval of h = 0,1 results in the shortest execution time.

According to the simulations, using an interval of h=0,1 provides the most accurate calculation.
The error margins for Heun and RK4 are comparable. Across all test, h = 0,1 also minimizes
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computation time. Euler is fastest method meanwhile RK4 is slowest. Considering both execution time
and mean error, Heun proves to be the most efficient algorithm for this case, as its effectiveness
computation time and accurateness compared to RK4.

CONCLUSION
Based on the result and discussion, the conclusions of this study are:

1. Among the tested time steps, h = 0,1 offers the most accurate result for Euler, Heun, and RK4,
reducing numerical errors compare to other time step sizes. Very large (h = 0,5) or very small
(h = 0,001) time steps result in numerical inconsistencies because of effect of truncation error
and rounding errors.

2. Euler shows the shortest execution time (see Table 3) but also has the highest error (see Table 4).

3. Heun and RK4 demonstrate comparable error margins (see Table 3), but Heun needs less
computational time than RK4 (Table 4), making Heun as the most efficient method for this case.

The author’s suggestion for future researchers to explore alternative numerical methods such
as Adam-Bashforth-Moulton scheme or adaptive Runge-Kutta, which may offer better accuracy and
stability for solving the SEIR model. Additionally, future studies can investigate the stability of the SEIR
model and observe sensitivity analyses on its parameters.(2014)
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