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ABSTRACT 

 
Accurately forecasting inflation rates is crucial for maintaining economic stability and guiding macroeconomic 
policy decisions in Indonesia. However, the inherent volatility and complex patterns of economic data, which 
often include both trend and seasonal components, present significant challenges. This research aims to 
determine the results and accuracy of forecasting inflation rates in Indonesia using Hybrid Singular Spectrum 
Analysis (SSA) – Autoregressive Integrated Moving Average (ARIMA). Hybrid SSA-ARIMA combines two 
complementary time series methods to enhance forecasting accuracy, particularly for economic data 
characterized by trends and seasonality. The data used consists of national consumer price inflation rates (Y-
on-Y) from January 2018 to December 2023. The forecast accuracy, as measured by Mean Absolute Percentage 
Error (MAPE), showed 56.26797% for Singular Spectrum Analysis and 18.88851% for Hybrid SSA-ARIMA. This 
demonstrates that Hybrid SSA-ARIMA has superior forecasting capabilities compared to Singular Spectrum 
Analysis in predicting inflation rates in Indonesia.  

 

Keywords: ARIMA, Forecasting, Hybrid, Inflation, SSA.  

 

INTRODUCTION 

Inflation is one of the most critical macroeconomic indicators, as it significantly influences a 
nation's economic conditions. Ensuring its stability is essential to prevent adverse effects and financial 
vulnerabilities. Consequently, forward-looking inflation information is crucial for formulating effective 
macroeconomic policies and programs, which can be obtained through statistical forecasting 
techniques (Fajar & Rachmad, 2018). The development of these methods has accelerated and become 
more complex with advancements in computing technology. Notably, the emergence of hybrid time 
series forecasting methods, which combine two different forecasting approaches, exemplifies this 
progress (Fajar, 2019). Hybrid models leverage the strengths of multiple methods, leading to more 
accurate forecasting results (Darmawan et al., 2022).  

One widely used hybrid time series forecasting method is Singular Spectrum Analysis- 
Autoregressive Integrated Moving Average (SSA-ARIMA). SSA is a non-parametric time series 
analysis technique that does not require stationarity assumptions or residual normality, making it 
suitable for both stationary and non-stationary data. SSA is particularly effective at identifying trends, 
seasonal patterns, and noise in time series data. A key concept in SSA is 'separability,' which refers to 
the ability to decompose the original time series into distinct components, such as trend, seasonality, 
and noise (Siti et al., 2019). This separability is crucial for isolating these components effectively, 
leading to more accurate forecasts. This approach is particularly well-suited for economic and business 
data, which often exhibit trends and seasonal patterns. Meanwhile, ARIMA  is a parametric time series 
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analysis technique applicable to both stationary and non-stationary data, as well as seasonal data. 
ARIMA involves systematic stages, including model identification, parameter estimation, and diagnostic 
testing, making it an ideal candidate for hybrid modeling (Arumsari et al., 2021). 

Several studies have utilized the hybrid SSA-ARIMA approach (Fajar, 2019), which compared 
the performance of ARIMA, SSA, and hybrid SSA-ARIMA in forecasting Indonesian economic growth. 
The study demonstrated that the hybrid SSA-ARIMA method outperformed both ARIMA and SSA, as 
indicated by its lower Root Mean Square Error (RMSE) values. Additionally, a research on inflation 
forecasting for East Kalimantan Province using the Hybrid SSA-ARIMA has been conducted  (Arumsari 
et al.,2021), This study found that the hybrid SSA-ARIMA(1,1,1) model improved forecasting accuracy 
for inflation in East Kalimantan Province in 2021. The highest inflation rate in December 2021 was 
0.92%, with forecasting accuracy metrics showing a Root Mean Square Error (RMSE) of 0.069399 and 
a Mean Absolute Percentage Error (MAPE) of 32.61084%. 

The use of the Hybrid SSA-ARIMA model for analyzing seasonal time series data was explored 
(Darmawan et al.,2022). In this context, additive and multiplicative seasonal patterns refer to the way 
seasonal fluctuations in the data behave relative to the overall trend. An additive seasonal pattern 
means that the seasonal effect remains constant regardless of the overall trend, while in a multiplicative 
seasonal pattern, the seasonal effect increases or decreases proportionally with the trend. The study 
found that for data exhibiting an additive seasonal pattern, the Hybrid SSA-ARIMA method with 
Alexandrov automatic grouping was more accurate (MAPE=0.13%), while for data with a multiplicative 
seasonal pattern, the Hybrid SSA-ARIMA method with alternative automatic grouping was more 
accurate (MAPE=3.63%). These findings demonstrate the flexibility and effectiveness of the hybrid 
method in handling different types of seasonal variations in time series data. 

 Based on previous research, the hybrid SSA-ARIMA method has proven to be effective and 
superior in improving the accuracy of economic data forecasting, particularly for data containing 
seasonal and trend components. By combining the strengths of SSA in separating data components 
and ARIMA in handling stationarity, the hybrid approach consistently delivers more accurate results 
compared to single methods. This method has successfully reduced forecasting errors in both 
economic growth and inflation predictions. These advantages make it a powerful tool for complex 
economic data analysis and a more reliable approach for achieving precise predictions in various 
economic contexts. The aim of this research is to evaluate the performance and accuracy of the Hybrid 
Singular Spectrum Analysis - ARIMA model in forecasting Indonesia's inflation rate for the period from 
January to December 2023.  

 
METHOD 

Type of Research 

This study employs a quantitative research approach, utilizing secondary data on inflation rates 
in Indonesia. The data were obtained from publications by the Central Statistics Agency, covering the 
period from January 2018 to December 2023. The primary variable in this study is inflation, defined as 
the continuous rise in the prices of goods and services over a specific period. 

 

Data Analysis Technique 

The data analysis in this study follows these steps: 

1) Conduct a descriptive analysis of the inflation variable 
2) Split the inflation data into in-sample and out-sample datasets 
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3) Perform time series analysis using SSA on the in-sample data, with the following steps: 
a. Embedding: Convert the Indonesia inflation rate data into a trajectory matrix. 

b. Singular Value Decomposition (SVD): Identify the eigentriples, including singular values √𝜆𝑖 , 

eigenvector Ui , and principal components  𝑉𝑖
𝑇. 

c. Grouping: Group the eigentriples obtained from the SVD step into components such as trend, 
seasonality, and noise. 

d. Diagonal Averaging: Calculate the average diagonal values of the separated components to 
obtain singular values for the forecasting stage. 

e. Conduct SSA forecasting using the Recurrent (R-forecasting) method with  the trend and seasonal 
components 

f. Assess the accuracy of SSA forecasting using MAPE  
4) Perform time series analysis with the ARIMA model on the noise component data obtained from 

the SSA reconstruction, including the following steps: 
a) Check the stationarity of the noise component data. 
b) Plot the Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) to 

identify the appropriate ARIMA model.  
c) Estimate model parameters and assess their significance 
d) Perform diagnostic checks for white noise and normality. 
e) Estimate model parameters and assess their significance 
f) Conduct forecasting using the ARIMA model. 

5) Implement hybrid SSA-ARIMA forecasting by combining the forecasts from SSA and ARIMA 
models. 

6) Evaluate the forecasting accuracy of the hybrid SSA-ARIMA model using MAPE. 

 

Singular Spectrum Analysis (SSA) 

According to Golyandina et al. (2001), the basic SSA algorithm consists of two main stages, 
namely decomposition (embedding & singular value decomposition) and reconstruction (grouping & 
diagonal averaging), which are explained as follows: 

1) Embedding 

Embedding is the process of converting one-dimensional time series data into a trajectory matrix 
by transforming the data from a vector to a matrix. For example, time series data of length n, without 
missing data, is expressed by X = {𝑥1, 𝑥2, … , 𝑥𝑛}. The data is transformed into a matrix of size L × K 
with L being the window length which becomes the matrix row where 2 < 𝐿 <  𝑛 2⁄ . Since there is 
no definitive method for determining the optimal value of L, it is typically selected through trial and error. 
The number of columns, K, is given by 𝐾 = 𝑛 − 𝐿 + 1. The resulting matrix can be represented as 

follows: 

 
 

𝑿 = [𝑋1, 𝑋2, … , 𝑋𝐾] =  [

𝑥1 𝑥2 … 𝑥𝐾
𝑥2
⋮
𝑥𝐿

𝑥3 … 𝑥𝐾+1
… ⋱ ⋮

𝑥𝐿+1 … 𝑥𝑛

] (1) 
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Matrix X is also referred to as a Hankel matrix, characterized by having identical values along all 
its anti-diagonal elements. Therefore, at this stage, the output is a Hankel matrix of size L × K (Khaeri 
et al., 2017). 

 

2) Singular Value Decomposition (SVD) 

SVD starts by determining the eigenvalues (𝜆1, 𝜆2, … , 𝜆𝐿) of the matrix S = XXT where 𝜆1 ≥

⋯ ≥ 𝜆𝐿 > 0, and the eigenvector (𝑈1, 𝑈2, … , 𝑈𝐿) of the matrix. If notated 𝑉𝑖 = 
𝑋𝑇𝑈𝑖

√𝜆𝑖
  then the SVD 

of the path matrix is as follows (Irmawati et al., 2018) : 

 
 𝑿 =  𝑋1 + 𝑋2 +⋯+ 𝑋𝑑 

𝑿 = 𝑈1√𝜆1𝑉1
𝑇 + 𝑈2√𝜆2𝑉2

𝑇 +⋯+𝑈𝑑√𝜆𝑑𝑉𝑑
𝑇 

𝑿 =  ∑𝑈𝑖√𝜆𝑖𝑉𝑖
𝑇

𝑑

𝑖=1

 

(2) 

with:  

i = 1, 2, ...., d and d = max {𝑖 ; 𝜆𝑖 > 0 } 

Basic concepts at this stage is to get 𝑿𝒊, where each matrix in the sequence contains an 

eigentriple consisting of eigenvector 𝑈𝑖, singular value √𝜆𝑖 , and principal components 𝑽𝒊
𝑻. 

 

3) Grouping 

Grouping is the stage of separating additive components such as trend, seasonality and noise 
contained in time series data. The grouping process is carried out by grouping sets of indices {1, 2, ..., 
d} into m subsets which can be denoted by I = I1, I2, ..., Im which then forms a matrix based on the 
singular value decomposition 𝑿𝒊 as follows: 

 
 𝑿𝑰 = 𝑿𝑰𝟏 + 𝑿𝑰𝟐 +⋯+ 𝑿𝑰𝒎 (3) 

 

The steps for looking at the set I = I1, I2, ..., Im are called eigentriple grouping. Eigentriples with 
almost the same characteristics will be grouped into one group or component (Satriani et al., 2020). 

 

4) Diagonal Averaging 

The next stage is to reconstruct each matrix in 𝑿𝑰 into new time series data with length n (Satriani 

dkk., 2020). Suppose the matrix 𝒀(𝑘) is of size  𝐿 × 𝐾 with elements 𝑦𝑖𝑗
(𝑘), wℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤

𝐿, 1 ≤ 𝑗 ≤ 𝐾. The matrix 𝒀(𝑘) is converted into time series data 𝑓0, … , 𝑓𝑛−1 through diagonal 
averaging as follows (Arumsari et al., 2021): 
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𝑓𝑡
(𝑘) = 

{
 
 
 
 

 
 
 
 

  

1

𝑡
∑𝑦𝑖,𝑡−𝑖+1,          

∗(𝑘)
          f𝑜𝑟 1 ≤ 𝑡 < 𝐿∗

𝑡

𝑖 =1

1

𝐿∗
∑𝑦𝑖,𝑡−𝑖+1,                                

∗(𝑘)
for 𝐿∗

𝐿∗

𝑖=1

≤ 𝑡 ≤ 𝐾∗

1

𝑛 − 𝑡 + 1
∑ 𝑦𝑖,𝑡−𝑖+1,          

∗(𝑘)
for 𝐾∗ ≤ 𝑡 < 𝑛

𝑛−𝐾∗+1

𝑖=𝑡−𝐾∗+1

 (4) 

 

The diagonal averaging stage aims to get the singular value of the components that have been 
separated by finding the average of the diagonals which is then used for forecasting. 

 

5) SSA Forecasting 

Reccurent forecasting (R-Forecasting) is one of the forecasting methods in SSA. In the R-
forecasting method, diagonal averaging is used to obtain reconstruction and continuation using the 
Linear Reccurent Formula (LRF). LRF coefficient estimation uses eigenvectors that have been 

obtained at the SVD stage. Let 𝑢𝑖
∇ be the first L-1 component vector of the eigenvector 𝑢𝑖  dan 𝜋𝑖  be 

the last component of 𝑢𝑖  (𝑖 = 1,… , 𝐼) with 𝑣2 = ∑ 𝜋𝑖
2𝐼

𝑖=1 . R can be defined as a vector consisting 

of the LRF coefficients of a component and can be calculated using the following equation (Hidayat et 
al., 2020): 

 
 

𝑅 = (𝑅𝐿−1, … , 𝑅1) =   
1

1 − 𝑣2
∑𝜋𝑖

𝐼

𝑖=1

𝑢𝑖
∇ 

(5) 

 

Forecasting results are obtained based on the following equation (Siringoringo et al.,  2022) : 

 
 

𝑓𝑡
(𝑘) =

{
 

 𝑓𝑡
(𝑘)                                for t=1, 2, …, n

∑𝑅𝑗=1
(𝑘)

𝐿−1

𝑗=1

𝑓𝑡−𝑗
(𝑘)      for t=n+1, n+2,…, n +m  

 (6) 

 

The SSA model used to obtain estimated values can be written as follows (Ete et al., 2020): 

 
 𝑓𝑡 = 𝑓𝑡

(1) + 𝑓𝑡
(2)

 (7) 

 

where 𝑘 = 1 is the trend component and k=2 is the seasonal component (Siringoringo et al., 2022). 
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Autoregressive Integrated Moving Average (ARIMA) 

The ARIMA model is a time series model that addresses non-stationarity by applying a 
differencing process of order d to achieve stationarity. In general, the ARIMA model is denoted as 
ARIMA(p, d, q) and can be formulated as follows (Aswi & Sukarna, 2006) : 

 
 𝜙𝑝(𝐵)(1 − 𝐵)

𝑑𝑍𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 (8) 

 

with: 

p, d, q  = orders of autoregressive (AR), differencing (d), and moving average (MA) 
components 
B  = Backshift operator  
𝜙𝑝(𝐵)  = non-seasonal operator AR = (1 − 𝜙1𝐵 − 𝜙2𝐵 −⋯− 𝜙𝑝𝐵

𝑝) 

(1 − 𝐵)𝑑 = non-seasonal differencing of orde d  

        𝜃𝑞(𝐵)  = non-seasonal MA operator = (1 − 𝜃1𝐵 − 𝜃2𝐵 −⋯− 𝜃𝑞𝐵
𝑞) 

 

The first step in constructing an ARIMA model is determining whether the data is stationary, 
which is crucial for accurate time series modeling. If the data is non-stationary with respect to the mean, 
differencing is applied; if non-stationary with respect to variance, a Box-Cox transformation is used. 
Once stationarity is achieved, the ARIMA model is identified by analyzing the Autocorrelation Function 
(ACF) and Partial Autocorrelation Function (PACF) plots to suggest initial values for the model 
parameters (p, d, q). After selecting an initial ARIMA model, parameter estimation is conducted to 
determine the model coefficients. Model adequacy is then evaluated using diagnostic tests. The 
significance of the model parameters is tested with the t-test, assuming normally distributed errors. To 
confirm that the residuals behave as white noise, the Ljung-Box test is employed, testing for the 
absence of autocorrelation in the residuals. Additionally, the Shapiro-Wilk test is used to verify that the 
residuals follow a normal distribution. If multiple models pass the diagnostic tests, the Akaike 
Information Criterion (AIC) is compared, and the model with the lowest AIC is selected as the best fit. 
Once the optimal ARIMA model is chosen, forecasting is performed by applying the model's parameters 
to predict future values of the time series, taking into account past values and residuals to enhance 
accuracy. 

 

Hybrid Autoregressive Integrated Moving Average – Singular Spectrum Analysis 

The forecasting results of the SSA - ARIMA hybrid model ( 𝑋̂𝑡) are given by (Arumsari et al., 
2021): 

 
 𝑋̂𝑡 = 𝑓𝑡 + 𝑍̂𝑡 (9) 

 

where 𝑓𝑡 represents the forecast obtained using the SSA method, and 𝑍̂𝑡 represents the forecast 
obtained from the ARIMA method, applied to the noise component of the data. 

 

Mean Absolute Percentage Error (MAPE) 

The MAPE value can be calculated using the formula (Wulandari & Yurinanda, 2021) : 
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𝑀𝐴𝑃𝐸 = (

1

𝑛
 ∑ |

𝑋𝑡 − 𝑋̂𝑡
𝑋𝑡

|
𝑛

𝑡=1
) × 100% (10) 

with  : 
𝑋𝑡 = actual data value 

𝑋̂𝑡 = forecasted data value 
𝑛  =  Number of data points 

 

Table 1 presents the MAPE value criteria (Wulandari & Yurinanda, 2021): 

 

Table 1. MAPE value criteria 

MAPE (X) Interpretation 

X < 10% Forecasting ability is very good. 
10% ≤ X < 20% Forecasting ability is good. 

20% ≤ X < 50% Forecasting ability is sufficient. 
X ≥ 50% Forecasting ability is poor 

 

RESULTS AND DISCUSSION 

Descriptive Analysis 

The descriptive statistics for Indonesia's inflation rate are provided in Table 2. 

 

Table 2. Descriptive statistics of Indonesia's inflation rate 

Variable Mean Standard Deviation Min Max 

Inflation 2.95 1.19 1.32 5.95 

 

Table 2 shows that the average inflation rate in Indonesia is 2.95 with a standard deviation of 
1.19. The lowest inflation rate value of 1.32 occurred in August 2020 and the highest inflation rate value 
of 5.95 occurred in September 2022. Figure 1 shows the time series plot of inflation rate data in 
Indonesia. 

Figure 1 presents the time series plot of the inflation rate in Indonesia from January 2018 to 
December 2022. The plot shows that the inflation rate exhibited a decreasing trend from January 2018 
to December 2020, followed by an increasing trend from January 2021 to December 2022. The first 
step in this analysis is to divide the inflation rate data into two parts: in-sample data and out-sample 
data. The in-sample data, covering the period from January 2018 to December 2022 with a total of 60 
data points, will be used for model analysis. Meanwhile, the out-sample data, consisting of 12 data 
points from January 2023 to December 2023, will be used for forecasting and evaluating the accuracy 
of the forecast. 
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           Figure 1. Time Series plot of inflation rate data in Indonesia 

 

Singular Spectrum Analysis 

1) Embedding 

At this stage, the window length (L) value is determined using a trial and error process. The L 
value to be analyzed is 2 < L < n/2 or 2 < L < 30. Based on the smallest MAPE value, the L value used 
in this analysis is L = 25. Based on the L value obtained, K = n – L + 1 = 60 – 25 + 1 = 36. The trajectory 
matrix is arranged as follows: 

 

𝐗𝟐𝟓×𝟑𝟔 =

[
 
 
 
 
 3.25 
3.18
3.40
⋮

2.68

3.18
3.40
3.41
⋮

2.98

  3.40
  3.41
  3.23
  ⋮

  2.96

  …
  …
  …
   ⋱
   …

  1.68 
 1.55
 1.38
  ⋮
5.51 ]

 
 
 
 

 

 

2) Singular Value Decomposition 

At this stage, calculations are carried out to obtain the triple eigenvalues based on the trajectory 
matrix X(25×36). The first step that needs to be done is to form a symmetric matrix S = XXT . After getting 
the symmetric matrix S(25×25), the next step is to calculate the eigentriple. This process will produce 25 
eigentriples consisting of singular value, eigenvector and principal component, each of which is in 
Tables 3, 4, and 5. 

 

Table 3. Singular Values 

No Eigenvalues Singular values 

1 5337.246 73.0564567 
2 402.9124 20.0726790 
3 55.87322 7.4748394 
⋮ ⋮ ⋮ 

Time

T
in

g
k
a

t_
In
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a

s
i

2018 2019 2020 2021 2022 2023 2024

2
3

4
5

6
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No Eigenvalues Singular values 

25 0.0474577 0.2178479 

 

Table 4. Eigenvector 

No U1 U2 … U25 

1 -0.2247623 -0.15872677 … -0.06880761 

2 -0.2217043 -0.16487471 … 0.22662370 

3 -0.2183852 -0.17108019 … -0.37164978 

⋮ ⋮ ⋮ ⋱ ⋮ 

25 -0.2099606   0.42532626 … 0.06326486 

 

Table 5. Principal component 

No V1 V2 … V25 

1 -0.2118303 -0.005990249 … -0.16055731 

2 -0.2110611 -0.007168110 … 0.17410403 

3 -0.2104319 -0.008564221 … 0.01860075 

⋮ ⋮ ⋮ ⋱ ⋮ 

36 -0.1925521 0.4009263 … -0.03531605 

 

3) Grouping 

In this step, eigentriple grouping obtained from the SVD stage is performed. Eigentriples with 
similar characteristics are grouped into a single component or cluster through graphical analysis, using 
singular value plots. Figure 2 represents a singular value plot displaying values for i = 1, 2, 3, ..., 25. 
Eigentriple grouping is essential as it allows for the identification and separation of dominant patterns 
or components, such as trends and seasonal effects, from noise. By grouping eigentriples with similar 
characteristics, we can concentrate on the primary signals that significantly contribute to the time series 
structure, thereby enhancing the accuracy of the analysis. This grouping also reduces data 
dimensionality, making subsequent modeling more efficient and interpretable. Practically, it leads to 
more precise forecasts by isolating the most informative components and filtering out irrelevant 
fluctuations, ultimately improving the model's robustness. 
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Figure 2. Singular values Graph 

 

In Figure 2, singular value 1, which is 73.0564567, has the highest contribution compared to 
other singular values, indicating that it has the greatest influence on the time series component and 
data characteristics. The singular values begin to gradually decline from eigentriple 8 to eigentriple 25, 
which can be identified as the noise component. However, this grouping remains somewhat subjective, 
so it is necessary to re-examine all eigentriples. One approach to identifying eigentriples that contain 
elements of trend, seasonality, and noise is to analyze the eigenvector plot, as shown in Figure 3. 

 

 

Figure 3. Eigenvector Graph 

 

Based on Figure 3, the eigenvector 2 graph shows a slow and steady variation, indicating a 
persistent and long-term pattern. Specifically, the trend component exhibits a monotonic increase from 
the bottom left to the top right, without frequent fluctuations or cyclical patterns. This gradual upward 
movement suggests that eigenvector 2 captures the underlying trend of the data. Furthermore, for 
grouping seasonal components, one method that can be used is periodogram analysis according to 
Golyandina et al. (2018). The seasonal components, as identified through periodogram analysis, 
display regular and repetitive patterns. These eigenvectors capture cyclical variations that repeat at 

Singular values Graph

Index

n
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s
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Eigenvector Graph
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22 (0%) 23 (0%) 24 (0%) 25 (0%)
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consistent intervals, which is indicative of seasonality. The periodic nature of these eigenvectors is a 
key indicator of seasonal behavior. The eigenvectors grouped into the noise category do not exhibit 
clear patterns of trend or seasonality. Instead, they are characterized by irregular, random fluctuations 
with no discernible repetitive structure. This randomness suggests that these eigenvectors represent 
noise, or the residual variation that cannot be attributed to trend or seasonality. The results of grouping 
the eigenvector into trend, seasonal and noise components are obtained as follows: 

 

Table 6. Eigenvector Grouping 

Group Eigenvector 

Tren 2 

Seasonal 8, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 

Noise 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13 

 

The w-correlation matrix is a tool used to evaluate the strength of correlations between different 
components in time series analysis. It provides a visual representation of how closely related various 
components are, based on their correlation coefficients. In this context, the w-correlation matrix is used 
to assess the separation of trend, seasonal, and noise components identified in the eigenvector 
analysis. According to Golyandina et al. (2018), examining the w-correlation matrix helps verify the 
accuracy of the component separation. In the matrix plot, darker color gradations indicate a strong 
correlation, suggesting that components with similar characteristics, such as trend or seasonality, are 
closely related. On the other hand, lighter color gradations reflect weaker correlations, which are 
typically associated with noise components that do not exhibit clear patterns of trend or seasonality. 
The following image presents the w-correlation matrix plot for the identified trend, seasonal, and noise 
components, demonstrating the correlation relationships between these groups. 

 

 

Figure 4. Plot W-Correlation Matrix 

 

W-correlation matrix

Tren

Seasons

Noise

Tren Seasons Noise
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In Figure 4, the w-correlation matrix plot visually represents the correlation between different 
components (trend, seasonal, and noise). The color gradation in this matrix is determined by the 
correlation coefficients calculated between pairs of components. A dark color gradation between two 
components signifies a strong correlation. For instance, if the trend component and the seasonal 
component show no significant color gradation and have a correlation value of 0.002, it implies that 
there is minimal correlation between these components, indicating they can be effectively separated. 
Conversely, lighter color gradations indicate weak correlations. For example, a correlation value of 
0.014 between seasonal and noise components, with no significant color gradation, suggests that these 
components are also well separated. When slight color gradation is observed, such as a correlation 
value of 0.088 between the trend and noise components, it implies a weak correlation. Although the 
correlation is not close to 1, the relatively minor gradation indicates that the components can still be 
separated, though there might be a very slight overlap. Based on these observations, the w-correlation 
matrix plot confirms that the trend, seasonal, and noise components are well separated, as indicated 
by the minimal color gradation and low correlation values between them. 

 

 

(a)                                                                      (b) 

 

(c) 

 

Figure 5. (a) Trend (b) Seasonal (c) Noise 
 

4) Diagonal Averaging 

At this stage, each component is reconstructed using the corresponding eigentriple. Diagonal 
averaging is achieved by summing the trend and seasonal components from the reconstruction results. 
The series of reconstructed components and diagonal averaging results are presented in Table 7. 
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Table 7. Reconstruction Results and Diagonal Averaging 

Nth 
Time 

Reconstruction Diagonal 

Averaging Trend Seasonal 

1 0.019085360 0.1171898914 0.13627525 

2 0.021331351 -0.1120307957 -0.09069944 

3 0.023859886 -0.0483674363 -0.02450755 

⋮ ⋮ ⋮ ⋮ 

60 3.422883012 0.1247528010 3.54763581 

 

5) SSA Forecasting 

Following the diagonal averaging, the next step is to perform modeling for forecasting the 
subsequent 12 months. The SSA forecasting method utilized is the R-forecasting technique with LRF 
coefficient estimation. The forecasting model for the trend component is presented as follows: 

 
 f̂t

(1)
= −0.082f̂t−1

(1) − 0.0867f̂t−2
(1) +⋯+ 0.206f̂t−24

(1)
 (11) 

 

Similarly, the forecasting model for the seasonal component is given below 

 
 f̂t

(2)
= −0.119f̂t−1

(2) + 0.015f̂t−2
(2) +⋯− 0.574f̂t−24

(2)
 (12) 

 

Based on the forecasting models developed for the trend and seasonal components, the next 
step is to combine the two components to obtain the SSA forecast. The results of the SSA forecasting 
are as follows: 

 

Table 8. Forecasting Results of Inflation Rates in Indonesia Using SSA 

Month 
Forecasting Inflation 

Rate Tren Seasonal 

January 2023 3.01 -0.02 2.99 

February 2023 3.03 -0.05 2.98 

March 2023 2.98 0.09 3.07 

April 2023 2.85 -0.06 2.79 

May 2023 2.66 -0.03 2.63 

June 2023 2.39 0.09 2.48 

July 2023 2.04 -0.06 1.98 
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Month 
Forecasting Inflation 

Rate Tren Seasonal 

August 2023 1.62 0.02 1.64 

September 2023 1.12 0.01 1.13 

October 2023 0.55 -0.04 0.51 

November 2023 -0.09 0.05 -0.04 

December 2023 -0.80 -0.03 -0.83 

 

Based on Table 8, March 2023 exhibits the highest inflation rate (3.07), while December shows 
the lowest inflation rate (-0.83). 

 

6) SSA Forecasting Accuracy 

The forecasting accuracy was measured using the Mean Absolute Percentage Error (MAPE). 
Based on Equation 10, the MAPE for Indonesia's inflation rate data is 56.26797%. This relatively high 
value for the Singular Spectrum Analysis (SSA) model indicates limited forecasting accuracy. The high 
MAPE can be attributed to the inherent complexity and volatility of Indonesia's inflation data during the 
study period, reflecting the challenges of accurately modeling such complex data using the SSA 
method alone. The SSA MAPE value will be compared with the MAPE value of the Hybrid SSA-ARIMA 
model. 

 

Hybrid Singular Spectrum Analysis – ARIMA 

The data utilized are the noise components obtained through the Singular Spectrum Analysis 
(SSA) method. The following outlines the steps for the SSA-ARIMA hybrid analysis.\ 

 

1) Stasionarity 

The stationarity of the noise component data can be assessed using several methods, one of 
which is a time series scatter diagram shown in Figure 6.  

 

 
 

Figure 6. Time Series Plot of Noise Component Data 

 

The stationarity of the data in terms of the mean was checked using the Augmented Dickey-
Fuller (ADF) test. Initially, the data was non-stationary (Figure 6), as indicated by a p-value of 0.2726, 
which is greater than the significance level α = 0.05. To address this, differencing was applied once, 
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which reduced the p-value to 0.01, making it less than α = 0.05. Therefore, after differencing once, the 
data became stationary with respect to the mean. To check for stationarity in the variance, the Box-
Cox transformation was used. Data is considered stationary in variance if the λ (lambda) value is close 
to 1. The analysis resulted in a λ value of 1.334426, which suggests that the noise component data is 
stationary in terms of variance. In conclusion, the data is stationary in both the mean (after one round 
of differencing) and in variance (based on the Box-Cox transformation with λ = 1.334426). 

 

2) Model Identification 

 Identifying the model in ARIMA starts with identifying the plot Autocorrelation Function (ACF) 
and plot Partial Autocorrelation Function (PACF).  

   

(a)                                                                               (b) 

Figure 7.  (a) Plot ACF (b) Plot PACF 

 

Based on Figure 7, the ACF plot shows a cut-off after lag 1 and 12, while the PACF plot shows 
a cut-off after lag 1. Therefore, it can be assumed that the preliminary models are ARIMA (1,1,0), 
ARIMA (0,1,1), ARIMA (1,1,0) (0,0,1)12, ARIMA (0,1,1) (0,0,1)12 . 

 

3) Parameter Estimation 

After obtaining the preliminary model estimates, the next step is to examine the estimation 
results and parameter significance, as shown in Table 9. 

 

Table 9. ARIMA Model Parameter Estimation 

Model Parameter Estimation P-Value 
Parameter 

Significance 

ARIMA 
(1,1,0) 

𝜙1 0.35769 0.004861 ** Significant 

ARIMA 
(0,1,1) 

𝜃1 0.31815 0.007855 ** Significant 

ARIMA 
(1,1,0) (0,0,1)12 

𝜙1 

Θ1 
0.324340 
0.037783 

0.2405 
0.8895 

Not Significant 
Not Significant 

ARIMA 
(0,1,1) (0,0,1)12 

𝜙1 
Θ1 

0.16806 
0.16806 

0.5613 
0.5613 

Not Significant 
Not Significant 
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Based on Table 9, it can be seen that two models are significant: the ARIMA(1,1,0) model, with 
parameters having a p-value of 0.004861 (less than α = 0.05), and the ARIMA(0,1,1) model, with 
parameters having a p-value of 0.007855 (less than α = 0.05). This indicates that the parameters of 
both models are significant. After identifying these two best models, tests for white noise and normality 
of residuals were conducted. 

 

4) Model Diagnostics 

a. White Noise Test for Residual 
 

Table 10. White Noise Test for Results 

Model Ljung-Box P-Value 

ARIMA (1,1,0) 0.0034784 0.953 

ARIMA (0,1,1) 0.080207 0.777 

 

Based on the results of the Ljung-Box test presented in Table 10, the p-values for both 
ARIMA(1,1,0) and ARIMA(0,1,1) models are greater than α (0.05). This indicates that the residuals of 
these models satisfy the white noise assumption. 

 

b. Normally Distribution Test for Residual 
 

Table 11. Shapiro Wilk Test Results 

Model Shapiro Wilk P-Value 

ARIMA (1,1,0) 0.98673 0.7595 
ARIMA (0,1,1) 0.98445 0.6415 

 

Based on the Shapiro-Wilk test results presented in Table 11, the p-values for all two models 
are greater than α (0.05). This indicates that the residuals of the ARIMA(1,1,0) and ARIMA(0,1,1) 
models are normally distributed. 

 

5) Selection of The Best Model 

The Table 12 represent the AIC values of the ARIMA (1,1,0) and ARIMA (0,1,1) models: 

 

Table 12. ARIMA (1,1,0) and ARIMA (0,1,1) AIC values 

Model AIC Values 

ARIMA (1,1,0) -29.92 

ARIMA (0,1,1) -29.03 

The ARIMA (1,1,0) model has the smallest AIC value, -29.92, indicating that it is the best model 
for forecasting 
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6) ARIMA and Hybrid SSA-ARIMA Forecasting 

The next step is to model the forecasting for the next 12 months. The forecasting model for 
ARIMA(1,1,0) is as follows: 

 
 𝑍𝑡 = 𝑍𝑡−1 + 0.36 𝑍𝑡−1 −  0.36 𝑍𝑡−2 + 𝑎𝑡 (13) 

 

Table 13 presents the forecasting results for the next 12 months using the ARIMA(1,1,0) model, 
as shown below: 

 

Table 13. ARIMA (1,1,0) Forecasting Results for Inflation Rate in Indonesia 

Month Forecasting 

January 2023 1.80 
February 2023 1.75 
March 2023 1.73 
April 2023 1.72 
May 2023 1.72 
June 2023 1.72 
July 2023 1.72 
August 2023 1.72 
September 2023 1.72 
October 2023 1.72 
November 2023 1.72 
December 2023 1.72 

 

The next step is to forecast using the SSA-ARIMA hybrid model, which combines the forecasting 
results of the SSA and ARIMA(1,1,0) models. The following results present the forecast of the inflation 
rate in Indonesia for the next 12 months using the SSA-ARIMA(1,1,0) hybrid model. 

 

Table 14. Hybrid SSA-ARIMA (1,1,0) Forecasting Results for Inflation Rate in Indonesia 

Month SSA 
ARIMA 
(1,1,0) 

SSA-ARIMA 
(1,1,0) 

January 2023 2.99 1.80 4.79 
February 2023 2.98 1.75 4.73 
March 2023 3.07 1.73 4.80 
April 2023 2.79 1.72 4.51 
May 2023 2.63 1.72 4.35 
June 2023 2.48 1.72 4.20 
July 2023 1.98 1.72 3.70 
August 2023 1.64 1.72 3.36 
September 2023 1.13 1.72 2.85 
October 2023 0.51 1.72 2.23 
November 2023 -0.04 1.72 1.68 
December 2023 -0.83 1.72 0.89 
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7) Hybrid SSA-ARIMA Forecasting Accuracy 

The Table 15 presents the accuracy of SSA and Hybrid SSA-ARIMA forecasts, measured by 
their respective MAPE values: based on the MAPE values obtained, namely: 

 

Table 15. Results of Forecasting Accuracy Measurements Based on MAPE 

Model MAPE 

SSA 56.26797 
Hybrid SSA - ARIMA 18.88851 

 

Based on Table 15, it is evident that the Hybrid SSA-ARIMA model (1,1,0) achieves a 
significantly lower MAPE value of 18.88851% compared to the SSA model's MAPE of 56.26797%. This 
substantial improvement indicates a more reliable forecast, particularly in terms of reducing error when 
predicting inflation rates in Indonesia. From a practical standpoint, the enhanced accuracy of the Hybrid 
SSA-ARIMA model can provide policymakers and economists with more precise predictions, enabling 
better decision-making and planning. This reduction in forecasting error could also contribute to 
minimizing risks associated with economic policy adjustments, ultimately leading to more stable 
economic outcomes. Additionally, as depicted in Figure 8, the forecasted values using the Hybrid SSA-
ARIMA model more closely align with the actual values in the out-sample data. This further reinforces 
the model's practical applicability, as it suggests that the Hybrid SSA-ARIMA model can capture the 
underlying inflation trends more effectively than the SSA model alone. 

 

 

Figure 8. Actual Data Graphs and Forecast Data 

 

CONCLUSION 

Based on the analysis conducted, it can be concluded that the Hybrid SSA-ARIMA model 
demonstrates better forecasting accuracy in predicting the inflation rate in Indonesia compared to SSA. 
The forecasted inflation rates for the 12-month period from January 2023 to December 2023 indicate 
that the lowest inflation occurred in December at 0.89%, while the highest inflation occurred in March 
at 4.80%. The MAPE values further support this conclusion, with the SSA model yielding a MAPE of 
56.26797%, while the Hybrid SSA-ARIMA model achieved a significantly lower MAPE of 18.88851%. 
It is evident that the forecasted values generated by the Hybrid SSA-ARIMA model closely follow the 
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actual inflation values, especially in the out-sample data, indicating a superior fit and more accurate 
forecasting performance. In contrast, the SSA model shows greater deviation from the actual values, 
which is reflected in its higher MAPE. The key finding from this study is that incorporating the ARIMA 
model within the SSA framework significantly enhances forecasting accuracy. This improvement has 
practical implications, particularly for policymakers and economists who rely on accurate inflation 
forecasts to make informed decisions. By utilizing the Hybrid SSA-ARIMA model, stakeholders can 
achieve more reliable predictions, leading to better planning, reduced risks, and ultimately more 
effective economic policy interventions. 
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