Pemanfaatan Cangkang Kepiting sebagai Adsorben pada Pengolahan Air Tercemar Logam Besi

Authors

  • Haryono Haryono Universitas Padjadjaran
  • Solihudin Solihudin Universitas Padjadjaran
  • Hersandy Dayu Kusuma Universitas Padjadjaran

DOI:

https://doi.org/10.33830/saintek.v2i1.13048.2025

Keywords:

adsorpsi, air limbah besi, cangkang kepiting, kitosan

Abstract

Cangkang kepiting merupakan salah satu jenis limbah dari pemanfaatan komoditas pangan perairan. Oleh karena itu akan mengakibatkan pencemaran lingkungan jika tidak dikelola secara optimal. Salah satu cara pengelolaan limbah cangkang kepiting adalah pemanfaatan limbah tersebut sebagai bahan baku dalam pembuatan kitosan. Kitosan mempunyai beragam kegunaan di berbagai sektor, misalnya di sektor pengolahan air limbah. Di sektor pengolahan air limbah, khitosan merupakan material potensial sebagai adsorben atau pengikat logam berat di perairan, salah satunya adalah besi. Tujuan penelitian ini adalah memanfaatkan limbah cangkang kepiting dalam pembuatan kitosan sebagai adsorben untuk pemisahan logam besi di lingkungan air. Tahap penelitian terdiri dari pembuatan kitosan dari cangkang kepiting melalui rangkaian proses deproteinasi, demineralisasi, dan deasetilasi; kemudian dilanjutkan dengan pengujian kitosan sebagai adsorben logam besi di lingkungan air. Hasil penelitian menunjukkan bahwa kitosan berhasil disintesis dari cangkang kepiting berdasarkan nilai derajat deasetilasi dari produk sintesis, yaitu sebesar 74,2%. Pengujian kitosan sebagai adsorben besi dalam lingkungan air dihasilkan, kitosan memiliki kapasitas adsorpsi maksimal terhadap ion Fe2+ sebesar 8,22 mg Fe2+/g kitosan. Pada dosis kitosan sebanyak 0,1 % (b/v) terhadap volume air limbah, adsorpsi selama 60 menit, kitosan mampu memisahkan ion Fe2+ dari air tercemar logam besi sebesar 31,13%.

References

Ahmad, S. Z. N., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z., & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008. https://doi.org/10.1016/j.chemosphere.2020.126008

Ahmed, T., & Aljaeid, B. (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy, 483. https://doi.org/10.2147/DDDT.S99651

Alaqarbeh, M. (2021). Adsorption Phenomena: Definition, Mechanisms, and Adsorption Types: Short Review. RHAZES: Green and Applied Chemistry, 13, 43–51.

Atkins, P., de Paula, J., & Keeler, J. (2018). Atkins’ Physical Chemistry: Thermodynamics and Kinetics (11th Edition). Bell & Bain Ltd.

Aung, K. P., Win, S. Z., & Thu, S. L. (2018). Study on chitin extraction from crab shells waste. International Journal of Science and Engineering Applications, 7(11), 437–441.

Boultif, W., Dehchar, C., Belhocine, Y., Zouaoui, E., Rahali, S., Zouari, S. E., Sbei, N., & Seydou, M. (2023). Chitosan and Metal Oxide Functionalized Chitosan as Efficient Sensors for Lead (II) Detection in Wastewater. Separations, 10(9), 479. https://doi.org/10.3390/separations10090479

Chiou, C. T. (2002). Fundamentals of the Adsorption Theory. In Partition and Adsorption of Organic Contaminants in Environmental Systems (pp. 39–52). John Wiley & Sons, Inc. https://doi.org/10.1002/0471264326.ch4

Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

De Queiroz Antonino, R., Lia Fook, B., De Oliveira Lima, V., De Farias Rached, R., Lima, E., Da Silva Lima, R., Peniche Covas, C., & Lia Fook, M. (2017). Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15(5), 141. https://doi.org/10.3390/md15050141

Fernandez-Kim, S.-O. (2004). Physicochemical and functional properties of crawfish chitosan as affected by different processing protocols [Thesis, Louisiana State University and Agricultural and Mechanical College]. https://doi.org/10.31390/gradschool_theses.1338

Himawan, D., Lindawati, L., & Ratnaningsih, R. (2023). Pemetaan bidang kajian komoditas kepiting di Indonesia berdasarkan artikel jurnal ilmiah dan prosiding. Jurnal Perpustakaan Pertanian, 32(1), 16–28.

Jabeen, F., Younis, T., Sidra, S., Muneer, B., Nasreen, Z., Saleh, F., Mumtaz, S., Saeed, R. F., & Abbas, A. S. (2023). Extraction of chitin from edible crab shells of Callinectes sapidus and comparison with market purchased chitin. Brazilian Journal of Biology, 83. https://doi.org/10.1590/1519-6984.246520

Kementerian Kelautan dan Perikanan Republik Indonesia. (2023). Profil Pasar Kepiting.

Khajavian, M., Vatanpour, V., Castro-Muñoz, R., & Boczkaj, G. (2022). Chitin and derivative chitosan-based structures — Preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers, 275, 118702. https://doi.org/10.1016/j.carbpol.2021.118702

Lyon, D. R., Smith, B. R., Abidi, N., & Shamshina, J. L. (2022). Deproteinization of Chitin Extracted with the Help of Ionic Liquids. Molecules, 27(13), 3983. https://doi.org/10.3390/molecules27133983

No, H. K., & Meyers, S. P. (2000). Application of Chitosan for Treatment of Wastewaters. In G. W. Ware (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 163, pp. 1–27). Springer. https://doi.org/10.1007/978-1-4757-6429-1_1

Novikov, V. Yu., Derkach, S. R., Konovalova, I. N., Dolgopyatova, N. V., & Kuchina, Y. A. (2023). Mechanism of Heterogeneous Alkaline Deacetylation of Chitin: A Review. Polymers, 15(7), 1729. https://doi.org/10.3390/polym15071729

Rostami, M. S., & Khodaei, M. M. (2024). Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions. International Journal of Biological Macromolecules, 270(2), 132386. https://doi.org/10.1016/j.ijbiomac.2024.132386

Schreinemachers, D. M., & Ghio, A. J. (2016). Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease. Environmental Health Insights, 10(1), 35–43.

Topić Popović, N., Lorencin, V., Strunjak-Perović, I., & Čož-Rakovac, R. (2023). Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences, 13(1), 623. https://doi.org/10.3390/app13010623

Vo, T., & Kim, S. (2012). Cosmeceutical Compounds From Marine Sources. In A. Seidel & M. Bickford (Eds.), Kirk-Othmer Encyclopedia of Chemical Technology (pp. 1–17). John Wiley & Sons, Inc. https://doi.org/10.1002/0471238961.cosmkim.a01

Younes, I., & Rinaudo, M. (2015). Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13(3), 1133–1174. https://doi.org/10.3390/md13031133

Zhan, J., Lu, J., & Wang, D. (2022). Review of shell waste reutilization to promote sustainable shellfish aquaculture. Reviews in Aquaculture, 14(1), 477–488. https://doi.org/10.1111/raq.12610

Downloads

Published

2025-09-30