• Daniel Fajar Puspita Balai Besar Bahan dan Barang Teknik (B4T), Kementerian Perindustrian RI
  • Deni Cahyadi Balai Besar Bahan dan Barang Teknik (B4T), Kementerian Perindustrian RI; Fakultas Teknik Mesin Dan Dirgantara (FTMD), Institut Teknologi Bandung (ITB)




urban mining, lithium battery waste, waste management


An urban mining proposal has been made that offers a lithium battery waste management
solution. This is motivated by the absence of a waste management system that specifically
handles lithium batteries. The research was conducted quantitatively for electrochemical
discharge experiments and qualitatively for data collection, processing and formulation of urban
mining proposals. From the experimental results, it was found that 5% NaCl is the optimum
concentration for electrochemical discharge. Obstacles are still found based on qualitative
analysis of waste management data in Indonesia, especially for lithium battery waste. The scope
of the proposed urban mining system includes the people as the user and the temporary
collectors. Hopefully this urban mining design is beneficial for an effective and environmentally
friendly lithium battery waste management plan.


Andina, E. (2019). Analisis Perilaku Pemilahan Sampah di Kota Surabaya. Aspirasi: Jurnal Masalah-Masalah Sosial, 10(2), 119-138. https://doi.org/10.46807/aspirasi.v10i2.1424

SNI 3242:2008 tentang Pengelolaan Sampah di Permukiman, (2008).

Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N., & Wang, Y. (2019). Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule, 3(11), 2622-2646. https://doi.org/10.1016/j.joule.2019.09.014

Crocce Romano Espinosa, D., Moura Bernardes, A., & Alberto Soares Tenório, J. (2004). Brazilian policy on battery disposal and its practical effects on battery recycling. Journal of Power Sources, 137(1), 134-139. https://doi.org/10.1016/j.jpowsour.2004.02.023

Golroudbary, S., Calisaya-Azpilcueta, D., & Kraslawski, A. (2019). The Life Cycle of Energy Consumption and Greenhouse Gas Emissions from Critical Minerals Recycling: Case of Lithium-ion Batteries. Procedia CIRP, 80, 316-321. https://doi.org/10.1016/j.procir.2019.01.003

Gu, F., Guo, J., Yao, X., Summers, P. A., Widijatmoko, S. D., & Hall, P. (2017). An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. Journal of Cleaner Production, 161, 765-780. https://doi.org/10.1016/j.jclepro.2017.05.181

Hendra, Y. (2016). Perbandingan Sistem Pengelolaan Sampah di Indonesia dan Korea Selatan: Kajian 5 Aspek Pengelolaan Sampah. Aspirasi: Jurnal Masalah-Masalah Sosial, 7(1), 77-91. https://doi.org/10.46807/aspirasi.v7i1.1281

Hesse, H., Schimpe, M., Kucevic, D., & Jossen, A. (2017). Lithium-Ion Battery Storage for the Grid-A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids. Energies, 10(12). https://doi.org/10.3390/en10122107

Peraturan Pemerintah Republik Indonesia Nomor 81 Tahun 2012 tentang Pengelolaan Sampah Rumah Tangga dan Sampah Sejenis Sampah Rumah Tangga, (2012).

Peraturan Pemerintah Republik Indonesia Nomor 101 Tahun 2014 tentang Pengelolaan Limbah Bahan Berbahaya dan Beracun, (2014).

Pedoman Pelaksanaan Reduce, Reuse, dan Recycle Melalui Bank Sampah, (2012).

Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.18/MenLHK/Setjen/Kum.1/8/2020 Tentang Pemanfaatan Limbah Bahan Berbahaya dan Beracun, (2020).

King, S., & Boxall, N. J. (2019). Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry. Journal of Cleaner Production, 215, 1279-1287. https://doi.org/10.1016/j.jclepro.2019.01.178

Li, Y., Liu, K., Foley, A. M., Zülke, A., Berecibar, M., Nanini-Maury, E., Van Mierlo, J., & Hoster, H. E. (2019). Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 113. https://doi.org/10.1016/j.rser.2019.109254

Lu, M., Zhang, H., Wang, B., Zheng, X., & Dai, C. (2013). The Re-Synthesis of LiCoO2 from Spent Lithium Ion Batteries Separated by Vacuum-Assisted Heat-Treating Method. International Journal of Electrochemical Science, 8, 8201-8209. http://www.electrochemsci.org/papers/vol8/80608201.pdf

Moriarty, P., & Honnery, D. (2019). Prospects for hydrogen as a transport fuel. International Journal of Hydrogen Energy, 44(31), 16029-16037. https://doi.org/10.1016/j.ijhydene.2019.04.278

Ojanen, S., Lundstrom, M., Santasalo-Aarnio, A., & Serna-Guerrero, R. (2018, Jun). Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste Manag, 76, 242-249. https://doi.org/10.1016/j.wasman.2018.03.045

Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule, 1(2), 229-243. https://doi.org/10.1016/j.joule.2017.08.019

Skeete, J.-P., Wells, P., Dong, X., Heidrich, O., & Harper, G. (2020). Beyond the EVent horizon: Battery waste, recycling, and sustainability in the United Kingdom electric vehicle transition. Energy Research & Social Science, 69. https://doi.org/10.1016/j.erss.2020.101581

Sommerville, R., Zhu, P., Rajaeifar, M. A., Heidrich, O., Goodship, V., & Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling, 165. https://doi.org/10.1016/j.resconrec.2020.105219

Sun, Z., Cao, H., Zhang, X., Lin, X., Zheng, W., Cao, G., Sun, Y., & Zhang, Y. (2017, Jun). Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Manag, 64, 190-201. https://doi.org/10.1016/j.wasman.2017.03.007

Tran, M.-K., DaCosta, A., Mevawalla, A., Panchal, S., & Fowler, M. (2021). Comparative Study of Equivalent Circuit Models Performance in Four Common Lithium-Ion Batteries: LFP, NMC, LMO, NCA. Batteries, 7(3). https://doi.org/10.3390/batteries7030051

Undang-Undang Republik Indonesia Nomor 18 Tahun 2008 tentang Pengelolaan Sampah, (2008).

Wang, X., Gaustad, G., Babbitt, C. W., & Richa, K. (2014). Economies of scale for future lithium-ion battery recycling infrastructure. Resources, Conservation and Recycling, 83, 53-62. https://doi.org/10.1016/j.resconrec.2013.11.009

Wang, Z. (2020). Analysis of Lithium Battery Recycling System of New Energy Vehicles under Low Carbon Background. IOP Conference Series: Earth and Environmental Science, 514, 1-5. https://doi.org/10.1088/1755-1315/514/3/032008

Yamada, Y., Wang, J., Ko, S., Watanabe, E., & Yamada, A. (2019). Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy, 4(4), 269-280. https://doi.org/10.1038/s41560-019-0336-z

Zeng, X., & Li, J. (2014). Spent rechargeable lithium batteries in e-waste: composition and its implications. Frontiers of Environmental Science & Engineering, 8(5), 792-796. https://doi.org/10.1007/s11783-014-0705-6

Zeng, X., Mathews, J. A., & Li, J. (2018, Apr 17). Urban mining of E-Waste is Becoming More Cost-Effective Than Virgin Mining. Environ Sci Technol, 52(8), 4835-4841. https://doi.org/10.1021/acs.est.7b04909

Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308. https://doi.org/10.1016/j.rser.2018.03.002




How to Cite

Puspita, D. F., & Deni Cahyadi. (2022). URBAN MINING OF SPENT LITHIUM BATTERY AS AN ALTERNATIVE SOURCE FOR LITHIUM BATTERY RAW MATERIALS. REKSABUMI, 1(2), 128–140. https://doi.org/10.33830/Reksabumi.v1i2.2163.2022