The Role of Generalized Space Time Autoregressive (GSTAR) Modelling in Understanding Economic Indicators: Farmer Value Food Crops Subsector
Keywords: Farmer Terms of Trade, GSTAR, Spatial weight
Abstract
Indonesia, as an agrarian nation, relies heavily on agriculture for rural livelihoods. The Farmer Terms of Trade (FTT) is a key indicator of farmer welfare. However, agriculture is often seen as ineffective in boosting income and reducing poverty. Despite this, the sector remains crucial for national development, especially the crops sub-sector, which sustains the country's food supply. The Generalized Space Time Autoregressive (GSTAR) model is employed to explore data relationships across proximate locations, focusing on geographical or observational locational factors. This analysis incorporates three spatial weights in the GSTAR model: (1) queen contiguity- weights, (2) uniform location weights, and (3) inverse distance spatial weights. Our findings indicate that the GSTAR model (11)I(1) with uniform spatial weight emerges as the optimal model. This model not only satisfies the white noise and normality assumptions but also demonstrates superior performance metrics, including a Mean Squared Error (MSE) of 2.34, Root Mean Squared Error (RMSE) of 1.53, and Mean Absolute Percentage Error (MAPE) of 1.10%. These figures notably surpass those obtained with the GSTAR models employing queen contiguity-based weights and inverse distance spatial weights, thereby highlighting its efficacy in capturing the dynamics within the crops sub-sector.
Downloads
References
Agnesya Risnandar, & Anneke Iswani Achmad. (2023). Pemodelan Generalized Space Time Autoregressive untuk Meramalkan Indeks Harga Konsumen. Jurnal Riset Statistika, 43–50. https://doi.org/10.29313/jrs.v3i1.1792
AgroNews.id. (2024). No Title. Data BPS, Sektor Pertanian Penyerapan Tenaga Kerja Tertinggi Pada Triwulan 1 2024. https://agronews.id/berita/1715058034/data-bps-sektor-pertanian-penyerapan-tenaga-kerja-tertinggi-pada-triwulan-1-2024
Aktivani, S. (2021). Uji Stasioneritas Data Inflasi Kota Padang Periode 2014-2019. Jurnal Statistika Industri Dan Kompetasi, 6(1), 26–33.
Andriyani, M. F., Hoyyi, A., & Yasin, H. (2018). Pemodelan Indeks Harga Konsumen Di Jawa Tengah Dengan Metode Generalized Space Time Autoregressive Seemingly Unrelated Regression (Gstar-Sur). Jurnal Gaussian, 7(4), 337–347. https://doi.org/10.14710/j.gauss.v7i4.28859
Arini, N. F., Huda, N. M., & Andani, W. (2023). Perbandingan Matriks Bobot Invers Jarak dan Bobot Seragam pada Model Gstar (1;1) untuk Data Indeks Harga Konsumen (Studi Kasus: Indeks Harga Konsumen di Kalimantan Barat). Tensor: Pure and Applied Mathematics Journal, 4(1), 27–36. https://doi.org/10.30598/tensorvol4iss1pp27-36
Aryani, F. N., Handajani, S. S., & Zukhronah, E. (2020). Penerapan Model Generalized Space Time Autoregressive (Gstar) Pada Data Nilai Tukar Petani 3 Provinsi Di Pulau Sumatera. ProSANDIKA UNIKAL, 2016, 209–220.
Ayu Pramesti Susilo, D., Sulistijowati Handajani, S., Zukhronah, E., Studi Statistika, P., & Matematika dan Ilmu Pengetahuan Alam, F. (2020). Penerapan Model Generalized Space Time Autoregressive-X Dalam Meramalkan Nilai Tukar Petani Subsektor Tanaman Pangan Di Tiga Provinsi Pulau Jawa Menggunakan Pembobot Invers Jarak. Seminar Nasional Pendidikan Dan Ilmu Matematika (SENANDIKA) 2020: Pemanfaatan Teknologi VR Dan AR Dalam Pembelajaran Matematika Program Studi Pendidikan Matematika FKIP Universitas Islam Malang, 106–113.
Azman, M. M. (2019). Analisa perbandingan nilai akurasi moving average dan exponential smoothing untuk sistem peramalan pendapatan pada perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 36–45.
Badan Pusat Statistik. (2019). HASIL SURVEI PERTANIAN ANTAR SENSUS (SUTAS) 2018.
Badan Pusat Statistik. (2023). Nilai Tukar Petani. Statistik Nilai Tukar Petani 2023. https://www.bps.go.id/id/publication/2024/04/23/d49e2636396e0b8311a2b53b/statistik-nilai-tukar-petani-2023.html
Gezi Fajri, Syafriandi Syafriandi, Nonong Amalita, & Zamahsary Martha. (2023). Comparison of Queen Contiguity and Customized Weighting Matrices on Spatial Regression to Identify Factors Impacting Poverty in East Java. UNP Journal of Statistics and Data Science, 1(3), 203–210. https://doi.org/10.24036/ujsds/vol1-iss3/67
Gusnadi, R., Rahmawati, R., & Prahutama, A. (2015). Pemodelan Generalized Space Time Autoregressive (Gstar) Seasonal Pada Data Jumlah Wisatawan Mancanegara Empat Kabupaten/Kota Di Jawa Tengah. Jurnal Gaussian, 4(4), 1017–1026.
Handayani, R., Wahyuningsih, S., & Yuniarti, D. D. (2018). Program Studi Statistika FMIPA Universitas Mulawarman 153 Pemodelan Generalized Space Time Autoregressive (GSTAR) Pada Data Inflasi di Kota Samarinda dan Kota Balikpapan Modeling Generalized Space Time Autoregressive (GSTAR) On Inflation Data In Samarinda. Jurnal EKSPONENSIAL, 9(2), 153–162.
Kurnia Informatika, N., Komputer, I., Singaperbangsa, U., & Abstrak, K. (2022). Penerapan Peramalan Penjualan Sembako Menggunakan Metode Single Moving Average (Studi Kasus Toko Kelontong Dedeh Retail). Jurnal Ilmiah Wahana Pendidikan, 8(17), 307–316.
Lewis, C. D. (1982). A Practical Guide to Exponential Smoothing and Curve Fitting. Industrial and Business Forecasting Methods, 2, 194–196.
Muzdhalifah, A. P., Tarno, T., & Kartikasari, P. (2023). Penerapan Model Generalized Space Time Autoregressive (Gstar) Untuk Meramalkan Penerbangan Domestik Pada Tiga Bandar Udara Di Pulau Jawa. Jurnal Gaussian, 11(3), 332–343. https://doi.org/10.14710/j.gauss.11.3.332-343
Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900
Nahdliyah, F. (2018). Pemodelan Generalized Space Time Autoregressive with Exogenous Variable pada Ekspor Tiga Provinsi di Pulau Jawa. 1–82.
Pani, D. D., & Yanti, T. S. (2020). Penerapan Metode Generalized Space Time Autoregressive (GSTAR) Model terhadap Penderita Penyakit Demam Berdarah Dengue (DBD). Prosiding Statistika, 105–112.
Salsabila, A. B., Ruchjana, B. N., & Abdullah, A. S. (2024). Development of the GSTARIMA(1,1,1) model order for climate data forecasting. International Journal of Data and Network Science, 8(2), 773–788. https://doi.org/10.5267/j.ijdns.2024.1.001
Salsabila, S. (2022). Implementasi Model Generalized Space Time Autoregressive ( GSTAR ). Jurnal Aplikasi Statistika & Komputasi Statistik, 1(12), 70–89.
Talungke, Y., Nainggolan, N., & Hatidja, D. (2015). Model Generalized Space Time Autoregressive (GSTAR) dengan Analisis Data Menggunakan Software R. D’CARTESIAN, 4(2), 122. https://doi.org/10.35799/dc.4.2.2015.8649
Wei, W. W. S. (2019). Multivariate Time Series Analysis and Applications.
Copyright (c) 2025 Jurnal Matematika Sains dan Teknologi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.