Comparative Analysis of Influenza Model Solutions Using Euler, Heun, and RK4 Methods
Keywords: Euler, Heun, influenza model, numerical method, Runge-Kutta
Abstract
This study explores the numerical solutions of an influenza epidemiological model, specifically the SEIR (Susceptible, Exposed, Infected, and Recovered) type, which is represented by a system of nonlinear differential equations. Three numerical methods were applied to solve this model: the Euler method, Heun’s method, and the fourth-order Runge-Kutta (RK4) method. The solutions obtained from these numerical methods were compared to the reference solution from ODE45, as the exact solution of the SEIR model remains unknown. Numerical simulations revealed that using either a very large step size ( ) or a very small step size led to significant numerical errors. Among the five different step sizes tested, provided the most accurate results. Based on the average computational time across different step sizes, the Euler method was the fastest, while RK4 was the slowest. However, the Euler method exhibited the largest error margin, whereas Heun’s and RK4 methods produced comparable errors. Although Heun’s method had the same error margin as RK4, it required less computational time, making it the most efficient choice for this case.
Downloads
References
Bronson, R., & Costa, G. (2006). Schaum’s Outline of Differential Equations, Third Edition (Third). The McGraw-Hill Companies, Inc.
Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers (7th Edition). McGraw-Hill Education.
Charostad, J., Rezaei Zadeh Rukerd, M., Mahmoudvand, S., Bashash, D., Hashemi, S. M. A., Nakhaie, M., & Zandi, K. (2023). A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Medicine and Infectious Disease, 55, 102638. https://doi.org/10.1016/j.tmaid.2023.102638
EVİRGEN, F., UÇAR, E., UÇAR, S., & ÖZDEMİR, N. (2023). Modelling Influenza A disease dynamics under Caputo-Fabrizio fractional derivative with distinct contact rates. Mathematical Modelling and Numerical Simulation with Applications, 3(1), 58–73. https://doi.org/10.53391/mmnsa.1274004
Gourram, H., Baroudi, M., Labzai, A., & Belam, M. (2023). Mathematical modeling and optimal control strategy for the influenza (H5N1). Communications in Mathematical Biology and Neuroscience. https://doi.org/10.28919/cmbn/8199
Griggs, E. P., Flannery, B., Foppa, I. M., Gaglani, M., Murthy, K., Jackson, M. L., Jackson, L. A., Belongia, E. A., McLean, H. Q., Martin, E. T., Monto, A. S., Zimmerman, R. K., Balasubramani, G. K., Chung, J. R., & Patel, M. (2022). Role of Age in the Spread of Influenza, 2011–2019: Data From the US Influenza Vaccine Effectiveness Network. American Journal of Epidemiology, 191(3), 465–471. https://doi.org/10.1093/aje/kwab205
Hurit, R. U., & Sudi Mungkasi. (2021). The Euler, Heun, and Fourth Order Runge-Kutta Solutions to SEIR Model for the Spread of Meningitis Disease. Mathline : Jurnal Matematika Dan Pendidikan Matematika, 6(2), 140–153. https://doi.org/10.31943/mathline.v6i2.176
H.V, W. (2014). Before the Vaccines: Medical Treatments of Acute Paralysis in the 1916 New York Epidemic of Poliomyelitis. The Open Microbiology Journal, 8(1), 144–147. https://doi.org/10.2174/1874285801408010144
Jester, B. J., Uyeki, T. M., & Jernigan, D. B. (2020). Fifty Years of Influenza A(H3N2) Following the Pandemic of 1968. American Journal of Public Health, 110(5), 669–676. https://doi.org/10.2105/AJPH.2019.305557
Kamorudeen, R. T., Adedokun, K. A., & Olarinmoye, A. O. (2020). Ebola outbreak in West Africa, 2014 – 2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response. Journal of Infection and Public Health, 13(7), 956–962. https://doi.org/10.1016/j.jiph.2020.03.014
Kharis, M., & Cahyono, A. (2015). PEMODELAN MATEMATIKA PADA EPIDEMI INFLUENZA DENGAN STRATEGI VAKSINASI. Indonesian Journal of Mathematics and Natural Sciences, 38(2), 176–185.
Krishnapriya, P., Pitchaimani, M., & Witten, T. M. (2017). Mathematical analysis of an influenza A epidemic model with discrete delay. Journal of Computational and Applied Mathematics, 324, 155–172. https://doi.org/10.1016/j.cam.2017.04.030
Liang, Y. (2023). Pathogenicity and virulence of influenza. Virulence, 14(1). https://doi.org/10.1080/21505594.2023.2223057
Ludji, D. G., & Buan, F. C. H. (2023). Penerapan Metode Runge-Kutta Orde 4 pada Pemodelan Penularan Penyakit Cacar Monyet. Jurnal Saintek Lahan Kering, 5(2), 24–26. https://doi.org/10.32938/slk.v5i2.1981
Martini, M., Gazzaniga, V., Bragazzi, N., & Barberis, I. (2019). The Spanish Influenza Pandemic: a lesson from history 100 years after 1918. Journal of Preventive Medicine and Hygiene, 60(1), 64–67.
Mena, I., Nelson, M. I., Quezada-Monroy, F., Dutta, J., Cortes-Fernández, R., Lara-Puente, J. H., Castro-Peralta, F., Cunha, L. F., Trovão, N. S., Lozano-Dubernard, B., Rambaut, A., van Bakel, H., & García-Sastre, A. (2016). Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. ELife, 5. https://doi.org/10.7554/eLife.16777
Moghadami, M. (2017). A Narrative Review of Influenza: A Seasonal and Pandemic Disease. Iranian Journal of Medical Sciences, 42(1), 2–13.
Mohammed, S. J., & Mohammed, M. A. (2021). Runge-kutta Numerical Method for Solving Nonlinear Influenza Model. Journal of Physics: Conference Series, 1879(3), 032040. https://doi.org/10.1088/1742-6596/1879/3/032040
Munir, R. (2021). METODE NUMERIK : Revisi kelima (Revisi ke-5). Informatika.
Novalia, E., & Nasution, H. (2018). Menguji Kestabilan dan Kekonsistenan Metode Heun Pada Model Epidemi Susceptible, Exposed, Infected and Recovered Untuk Penyakit Demam Berdarah Dengue. Jurnal Sains Indonesia, 42(2), 52–58.
Pratiwi, C. D., & Mungkasi, S. (2021). Euler’s and Heun’s numerical solutions to a mathematical model of the spread of COVID-19. 030110. https://doi.org/10.1063/5.0052915
Rahmadhania, I., & Arif, D. K. (2020). Kontrol Optimal pada Model Penyebaran Virus Influenza Tipe A H1N1 dengan Menggunakan Prinsip Minumum Pontryagin. Limits: Journal of Mathematics and Its Applications, 17(1), 67. https://doi.org/10.12962/limits.v17i1.6694
Richard, M., & Fouchier, R. A. M. (2016). Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiology Reviews, 40(1), 68–85. https://doi.org/10.1093/femsre/fuv039
Setiawan, L. I., & Mungkasi, S. (2021). PENYELESAIAN MODEL EPIDEMI SIR MENGGUNAKAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH-MOULTON. Komputasi: Jurnal Ilmiah Ilmu Komputer Dan Matematika, 18(2), 55–61. https://doi.org/10.33751/komputasi.v18i2.3623
The Lancet. (2017). The global HIV/AIDS epidemic—progress and challenges. The Lancet, 390(10092), 333. https://doi.org/10.1016/S0140-6736(17)31920-7
Wu, Y.-C., Chen, C.-S., & Chan, Y.-J. (2020). The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association, 83(3), 217–220. https://doi.org/10.1097/JCMA.0000000000000270
Copyright (c) 2025 Jurnal Matematika Sains dan Teknologi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.