RASIO PATI SINGKONG DAN ASAM AKRILAT TERHADAP KAPASITAS ABSORBSI PADA SINTESIS KOMPOSIT POLIMER SUPERABSORBAN
Keywords: absorption capacity, acrylic acid, asam akrilat, cassava starch, grafting, kapasitas absorbsi, komposit polimer superabsorban, pati singkong, superabsorbent polymer composites
Abstract
This study aimed to synthesize a superabsorbent polymer composite based on a natural polymer that has been made by grafting method using cassava starch as a backbone (main framework), Acrylic acid (AA) as a monomer, Ammonium persulfate (APS) as an initiator and N,N Methylene bisacrylamide (MBA) as a crosslinker. The effect of the ratio of cassava starch and acrylic acid (25 : 75; 50 : 50 and 75 : 25% weight total) has been studied based on absorption capacity. The chemical structure that occurs is analyzed using Fourier Transform Infra-red (FTIR) spectroscopy. The results of the FTIR spectrum showed that the grafting of acrylic acid to starch occurred. In the ratio of starch to acrylic acid 25 : 75% of the weight total obtained the maximum water absorption ability (absorption capacity) 224 g/g in aquades and 25 g/g in 0,9% NaCl solution.
Tujuan dari penelitian ini adalah untuk mensintesis komposit polimer superabsorban berbasis polimer alam yang telah dibuat dengan metode grafting (pencangkokan) yang menggunakan pati singkong sebagai backbone (kerangka utama), asam akrilat (AA) sebagai monomer, Ammonium persulfat (APS) sebagai inisiator dan N,N Metilen bisakrilamida (MBA) sebagai crosslinker. Pengaruh rasio pati singkong dan asam akrilat (25 : 75; 50 : 50 dan 75 : 25% berat total) telah dipelajari berdasarkan kapasitas absorbsi. Struktur kimia yang terjadi dianalisa menggunakan spektroskopi Fourier Transform Infra-red (FTIR). Hasil dari spektrum FTIR memperlihatkan bahwa terjadinya grafting asam akrilat terhadap pati. Pada rasio pati dengan asam akrilat 25 : 75% berat total diperoleh kemampuan menyerap air (kapasitas absorbsi) maksimum 224 g/g dalam aquades dan 25 g/g dalam larutan NaCl 0,9%.
Downloads
References
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6 (2), 105–121. https://doi.org/10.1016/j.jare.2013.07.006.
Besemer, A. ., Verwilligen, A. M. Y. W., & Thornton, J. (2012). Hygienic absorbent with odour control. (US Patent Ofï¬ce, Pat. No. 8,129,581).
Badan Pusat Statistik (BPS). (2018) diakses dari https://www.bps.go.id/, diakses pada tanggal 28 Juli 2019 pada jam 20.00 WIB.
Cresswell C.J, Runquist O.A, & Campbell M. (2005). Analisis spektrum senyawa organik. Padmawinata K, Soediro I, Penerjemah; Bandung: Penerbit ITB. Terjemahan dari: Spectrum Analysis of Organic Compound. An Introductory Programmed Text.
Demitri, C., Scalera, F., Madaghiele, M., Sannino, A., & Maffezzoli, A. (2013). Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science. https://doi.org/http://dx.doi.org/10.1155/2013/435073.
Elliott, M. (2004). Superabsorbent polymers. Product development scentist for SAP. BASF AG, Ludwigshafen, Germany.
Kulkarni, P., Kalwale, L., Rane, A., & Abitha, V. K. (2014). Synthesis and characterization of poly (acrylic acid)/starch/bentonite superabsorbent polymer composite. Researh and Reviews on Polymer, 5(3), 96–101.
Li, A., Zhang, J., & Wang, A. (2007). Utilization of Starch and Clay for the Preparation of Superabsorbent Composite. Bioresource Technology, 98(2), 327–332. https://doi.org/10.1016/j.biortech.2005.12.026.
Li, D., Zhang, X., Simon, G. P., & Wang, H. (2012). Forward Osmosis Desalination using Polymer Hydrogels as a Draw Agent : Influence of Draw Agen, Feed Solution and Membrane on Process Performance. Water Research, 47(1), 209–215. https://doi.org/10.1016/ j.watres.2012.09.049.
Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J., & Ma, Z. (2013). Adsorption Behavior of Heavy Metal Ions from Aqueous Solution by Soy Protein Hollow Microspheres. Journal Industrial & Engineering Chemistry Research, 52, 11036–11044. https://doi.org/dx.doi.org/10.1021/ ie401092f.
Loo, S., Fane, A. G., Lim, T., Krantz, W. B., Liang, Y., Liu, X., & Hu, X. (2013). Superabsorbent Cryogels Decorated with Silver Nanoparticles as a Novel Water Technology for Point-of-Use Disinfection. Journal Enviromental Science & Technology, 47, 9363-9371. https://doi.org/ 10.1021/es401219s.
Nakason, C., Wohmang, T., Kaesaman, A., & Kiatkamjornwong, S. (2010). Preparation of cassava Starch-Graft-Polyacrylamide superabsorbents and associated composites by reactive blending. Carbohydrate Polymers, 81(2), 348–357. https://doi.org/10.1016/ j.carbpol.2010.02.030.
Pope, G. A. (2007). Overview of chemical EOR, center for petroleum and geosystems engineering. The University of Texas pada Austin Casper EOR Workshop.
Pourjavadi, A., Jahromi E. P., Seidi, F., & Salimi, H. (2010). Synthesis and swelling behavior of Acrylatedstarch-g-Poly (Acrylic Acid) and Acrylatedstarch-g-Poly (Acrylamide) Hydrogels. Carbohydrate Polymers, 79(4), 933–940. https://doi.org/10.1016/j.carbpol.2009.10.021.
Savich, M. H., Olson, G. S., & Clark, E. W. (2010). Superabsorbent polymer suspension for use in agriculture. (EP Patent Ofï¬ce, Pat. No. 2,170,042).
Singh, B., & Sharma, V. (2014). Influence of polymer network parameters of Tragacanth Gum-based pH responsive hydrogels on drug delivery. Carbohydrate Polymers, 101(1), 928–940. https://doi.org/10.1016/j.carbpol.2013.10.022.
Spagnol, C., Rodrigues, F. H. A., Pereira, A. G. B., Fajardo, A. R., Rubira, A. F., & Muniz, E. C. (2012). Superabsorbent hydrogel nanocomposites based on Starch-g-Poly (Sodium Acrylate) matrix filled with cellulose nanowhiskers. Cellulose, 19(4), 1225–1237. https://doi.org/10.1007/s10570-012-9711-7.
Witono, J. R., Noordergraaf, I. W., Heeres, H. J., & Janssen, L. P. B. M. (2014). Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydrate Polymers, 103(1), 325–332. https://doi.org/10.1016/j.carbpol.2013.12.056.
Wu, L., Liu, M., & Liang, R. (2008). Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresource Technology, 99, 547–554. https://doi.org/10.1016/j.biortech.2006.12.027.
Zhang, J., Wang, L., & Wang, A. (2006). Preparation and swelling behavior of fast-swelling superabsorbent hydrogels based on Starch- g -Poly ( acrylic acid- co -sodium acrylate ). Macromolecular Materials and Engineering, 291(6), 612–620. https://doi.org/10.1002/mame.200500387.
Zhang, M., Cheng, Z., Zhao, T., Liu, M., Hu, M., & Li, J. (2014). Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. Journal of Agricultural and Food Chemistry, 62(35), 8867–8874. https://doi.org/10.1021/jf5021279.
Zhou, Y., Fu, S., Zhang, L., & Zhan, H. (2013). Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-P (AA-co-AM ). Carbohydrate Polymers, 97(2), 429–435. https://doi.org/10.1016/j.carbpol.2013.04.088.
Zohuriaan-Mehr, M. J., & Kabiri, K. (2008). Superabsorbent polymer materials: A review. Iranian Polymer Journal (English Edition), 17(6), 451–477.