MODEL EPIDEMIK CAMPAK DENGAN ADANYA VAKSIN PADA POPULASI RENTAN DAN SUPPORT PADA POPULASI TEREKSPOSE
Keywords: Measles disease, mathematical model, equilibrium point, stability analysis, numerical simulation
Abstract
Measles is a highly contagious disease and often occurs in children due to malnutrition, especially children with vitamin A deficiency and a weakened immune system. In addition to vaccination, the role of parents is needed in the form of support to control the development of the virus in the body. This measles disease can be modeled through a mathematical model, especially epidemic model. This study aims to explain the formation of a mathematical model of measles, determine the equilibrium point, basic reproduction number, stability analysis, and to perform numerical simulations on the model. The research procedure begins with construct a model using a system of nonlinear differential equations. The basic reproduction number can be determined using the next generation matrix method and analysis of model stability using the linearization method. While numerical simulation has been carried out using the fourth order Runge Kutta method. The result of this study is the formation of a mathematical model of measles with a population consisting of four compartments, namely Susceptible, Exposed, Infected and Recovered. Disease control is carried out in the model, namely vaccines in the Susceptible population and support measures in the Exposed population. From the model formed, two equilibrium points are obtained, namely the disease-free equilibrium point and the endemic equilibrium point. Furthermore, the basic reproduction number formula and analysis of the stability of the model at the disease-free equilibrium point and endemic equilibrium point are also obtained. Finally, a simulation model is presented to support stability analysis and comparison of solutions for the Infected population before being given control support and after being given control support with variations in vaccine percentages.
Downloads
References
Ahaya, S. O. S. P., Rahmi, E., & Nurwan, N. (2020). Analisis dinamik model SVEIR pada penyebaran penyakit campak. Jambura Journal of Biomathematics (JJBM), 1(2), 57–64. https://doi.org/10.34312/jjbm.v1i2.8482
Anton, H., Rorres, C., & Kaul, A. (2019). Elementary Linear Algebra Applications Version (12th ed.). Wiley.
Bakare, E. A., Adekunle, Y. A., & Kadiri, K. . (2012). Modelling and simulation of the dynamics of the transmission of measles. International Journal of Computer Trends and Technology, 3(1), 174–178.
Driessche, P. Van Den, & Watmough, J. (2008). Further notes on the basic reproduction number. Lecture Notes in Mathematics, 1945, 159–178. https://doi.org/10.1007/978-3-540-78911-6_6
Edward, S. (2015). A Mathematical Model for Control and Elimination of the Transmission Dynamics of Measles. Applied and Computational Mathematics, 4(6), 396. https://doi.org/10.11648/j.acm.20150406.12
Guerra, F. M., Bolotin, S., Lim, G., Heffernan, J., Deeks, S. L., Li, Y., & Crowcroft, N. S. (2017). The basic reproduction number (R0) of measles: a systematic review. The Lancet Infectious Diseases, 17(12), e420–e428. https://doi.org/10.1016/S1473-3099(17)30307-9
Haryanugroho, S. O. (2019). Perilaku orang tua terhadap penanganan penyakit campak pada anak-anak. https://doi.org/https://doi.org/10.31227/osf.io/qfe3s
Jamil, A. K., Yulida, Y., & Karim, M. A. (2023). Analisis Kestabilan dan Solusi Numerik pada Model SEIR untuk Penyakit Tuberkulosis. Epsilon: Jurnal Matematika Murni Dan Terapan, 17(1), 14–29.
Karim, M. A., & Yulida, Y. (2021). Analisis Kestabilan dan Sensitivitas pada Model Matematika SEIRD dari Penyebaran Covid-19: Studi Kasus di Kalimantan Selatan. Media Bina Ilmiah, 16(5), 7003–7012.
Kemenkes RI. (2018). Situasi Campak dan Rubella di Indonesia. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://d3v.kemkes.go.id/storage/download/pusdatin/infodatin/imunisasi campak 2018.pdf
Khadijah, M., Yulida, Y., & Susanti, D. S. (2021). Model Mangsa-Pemangsa dengan Fungsi Respon Holling dan Pemanenan. Epsilon: Jurnal Matematika Murni Dan Terapan, 15(2), 93–104.
Kholisoh, S., Waluya, S. B., & Kharis, M. (2012). Model epidemi SEIR pada penyebaran penyakit campak dengan pengaruh vaksinasi. Unnes Journal of Mathematics, 1(2), 110–117.
Lestari, S. M., Yulida, Y., Lestia, A. S., & Karim, M. A. (2021). Stability analysis of a smoking behavior model. Journal of Physics: Conference Series, 2106(1). https://doi.org/10.1088/1742-6596/2106/1/012025
Martcheva, M. (2015). An Introduction to Mathematical Epidemiology. Springer. https://doi.org/10.1007/978-1-4899-7612-3
Momoh, A. A., Ibrahim, M. O., Uwanta, I. J., & Manga, S. B. (2013). Mathematical Model for Control of Measles Epidemiology. International Journal of Pure and Applied Mathematics, 87(5), 707–718.
Mulyono. (2016). Kajian Sejumlah Metode untuk Mencari Solusi Numerik Persamaan Diferensial. Konferensi Nasional Penelitian Matematika Dan Pembelajarannya.
Sowole, S. O., Ibrahim, A., Sangare, D., & Lukman, A. O. (2020). Mathematical model for measles disease with control on the susceptible and exposed compartments. Open Journal of Mathematical Analysis, 4(1), 60–75. https://doi.org/10.30538/psrp-oma2020.0053
Sowole, S. O., Sangare, D., & Ibrahim, A. A. (2019). On the existence, uniqueness, stability of solution and numerical simulations of a mathematical model for measles disease. Adv-Math.Com, 2019(4), 84–111. http://adv-math.com/wp-content/uploads/2019/07/adv-manuscript.pdf.pdf
Taylor, M. R., & Bhathawala, P. H. (2012). Linearization of Nonlinear Differential Equation by Taylor’s Series Expansion and Use of Jacobian Linearization Process. International Journal of Theoretical and Applied Science, 4(1), 36–38.
Trottier, H., & Philippe, P. (2012). Deterministic Modeling Of Infectious Diseases: Applications To Measles And Other Similar Infections. The Internet Journal of Infectious Diseases, 2(1), 1–10. https://doi.org/10.5580/89b
Zill, D. G., & Cullen, M. R. (2009). Differential Equations with Boundary-Value Problems (Seventh, Issue C). Brooks/Cole Publishing Company, USA

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2023 Jurnal Matematika Sains dan Teknologi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.