INTERPRETASI ANALISIS AMMI DENGAN BIPLOT (Kasus Analisis Interaksi Genotip Tanaman Padi dengan Lingkungan pada Percobaan Lokasi Ganda) Universitas Terbuka
Keywords: AMMI, Biplot, Komponen Utama Interaksi, Interaksi, Genotip, Lingkungan, Lokasi ganda, Anova
Abstract
Multilocationtrials play an important role in agronomic research. Theseare often used to analyse the adaptability of genotypes indifferent environments. Multilocation trials also are usedto find out which environment is the best location to adaptfor each genotype that is the highest yielding in the environmentand to determine the pattern of response of genotypes acrossenvironments. ANOVA is used to compute genotype and environmentadditive effects. However, it cannot be used to analyse agenotype-environmental interaction. Principle component analysis(PCA) is only used to analyse non additive interaction effects.The statistical analysis recommended here combines the Anovawith PCA that is Additive Main effects and MultiplicativeInteraction (AMMI) with PCA. It begins with the usual analysisof variance to compute genotype and environment additive effects,and then applies PCA to analyse non additive interaction effects.The results of AMMI analysis is presented graphically in theform of biplots. The use of these procedure is exemplifiedusing secondary data set of the mean yield of padi from TheCenter of Indonesian Padi Research in Sukamandi.
Downloads
References
Gauch, H.G., Zobel, R.W. 1988. Predictive and postdictivesucces of statistical analysis of yield trials . Theor ApplGenet 76: 1-10
Gomez, K.A. , Gomez, A.A. 1995. Prosedur Statistika untukPenelitian Pertanian. Edisi ke dua. Penerbit UniversitasIndonesia. Indonesia.
Kempthorne, O. 1952. The design and analysis of experiments.Wiley, New York
Koopmans, L. H. 1987. Introduction to Contemporary StatisticalMethods. PWS Publisher, Boston. (Terjemahan oleh BambangSumantri 1996)
Mattjik, A. A. & I. M. Sumertajaya 2000, Perancanganpercobaan dengan aplikasi SAS dan Minitab. Jilid 1. IPBPress. Bogor
Piepho, H. P. 1994. Best Linear Unbiased Prediction (BLUP)for Regional Yield Trials: A Comparison to Additive MainEffects and Multiplicative (AMMI) Analysis. Theor Appl Genet89:647-654
Searle, S.R. 1987. Linear models for unbalanced data. Wiley,New York
Searle, S.R., Casella, G., McCulloch, C.E. 1992. VarianceComponents. Wiley, New York
Steel, R.G.D., Torrie, J.H. 1980. Principles and proceduresof statistics. A biometrical approach, 2nd , McGraw Hill,New York.
Suharjo, Budi dan Siswadi. 1999. Analisis Eksplorasi DataPeubah Ganda dan SPSS 7.5. Jurusan FMIPA-IPB. Bogor
Sumertajaya,I Made. 1998. Perbandingan Model AMMI dan Regresi Linieruntuk menerangkan pengaruh interaksi percobaan lokasi ganda.Program Pascasarjana. Institut Pertanian Bogor.
Suwardi. 2001. Metode AMMI pada model Campuran. ProgramPascasarjana. Institut Pertanian Bogor.
Wahyuningrum,Endang. 2003. AMMI Campuran dan BLUP untuk memprediksi dayahasil interaksi genotip tanaman padi dengan lingkungan padapercobaan lokasi ganda. Program Pascasarjana. Institut PertanianBogor.