BILANGAN KROMATIK HARMONIS PADA GRAF PAYUNG, GRAF PARASUT, DAN GRAF SEMI PARASUT
Keywords: vertex coloring, pair of colors, chromatic number
Abstract
This article discusses the harmonic coloring of simple graphs G, namely umbrella graphs, parachute graphs, and semi-parachute graphs. A vertex coloring on a graph G is a harmonic coloring if each pair of colors (based on edges or pair of vertices) appears at most once. The chromatic number associated with the harmonic coloring of graph G is called the harmonic chromatic number denoted XH(G). In this article, the exact values of harmonic chromatic numbers are obtained for umbrella graphs, parachute graphs, and semi-parachute graphs.
Downloads
References
Aflaki, A., Akbari, S., Eskandani, D. S., Jamaali, M., & Ravanbod, H. (2016). On The Harmonious Colouring of Trees. Ars Comb., 128, 55–62.
Akbari, S., Kim, J., & Kostochka, A. (2012). Harmonious coloring of trees with large maximum degree. Discrete Mathematics, 312(10), 1633–1637.
Aprilia, K. R., Agustin, I. H., & Dafik, D. (2014). Pelabelan Total Super (a, d)-sisi Antimagic pada Graf Semi Parasut SP2n− 1. Prosiding Seminar Matematika dan Pendidikan Matematik, 1(1).
Ghodasara, G. V, & Patel, M. J. (2017). Some new combination graphs. International journal of mathematics and its applications, 5(2-A), 153–161.
Hegde, S. M., & Castelino, L. P. (2015). Harmonious colorings of digraphs. Ars Combinatoria, 119, 339–352.
Huilgol, M. I., & Sriram, V. (2016). On the harmonious coloring of certain class of graphs. Journal of Combinatorics, Information & System Sciences, 41(1–3), 17.
Indriani, S., & Budayasa, I. K. (2020). Bilangan Pewarnaan Harmonis pada Graf Berarah. Mathunesa: Jurnal Ilmiah Matematika, 8(1), 45–54.
Kierstead, H. A., Yang, D., & Yi, J. (2020). On coloring numbers of graph powers. Discrete Mathematics, 343(6), 111712.
Kolay, S., Pandurangan, R., Panolan, F., Raman, V., & Tale, P. (2016). Harmonious coloring: Parameterized algorithms and upper bounds. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9941 LNCS, 245–256. https://doi.org/10.1007/978-3-662-53536-3_21
Liu, J.-B., Arockiaraj, M., & Nelson, A. (2019). Tight bounds on 1-harmonious coloring of certain graphs. Symmetry, 11(7), 917.
Mansuri, A., & Chandel, R. S. (2021). Harmonious Coloring of Middle Graph of Quadrilateral Snake Graphs. Sohag Journal of Mathematics An International Journal, 8(3), 93–97.
Munir, R. (2010). Matematika Diskrit Ed ke-3. Bandung: Informatika.
Ponraj, R., Gayathri, A., & Somasundaram, S. (2022). 4-Remainder Cordial Labeling of Parachute, Twig, Kayak Paddale Graph. Palestine Journal of Mathematics, 11(2), 26–37.
Rahmadi, D., Kusmayadi, T. A., & Kuntari, S. (2017). Dimensi Metrik Kuat pada Graf Payung dan Buku Bertumpuk. Skripsi. Jurusan Matematika Universitas Negri Yogyakarta.
Selvi, F. T., & Amutha, A. (2020). Optimization of Harmonious Chromatic Number Problem in Green Wireless Access Network. Journal of Green Engineering, 10(4), 1419–1428.
Takaoka, A., Okuma, S., Tayu, S., & Ueno, S. (2015). A note on harmonious coloring of caterpillars. IEICE TRANSACTIONS on Information and Systems, 98(12), 2199–2206.
Venkatachalam, M., Vernold Vivin, J., & Kaliraj, K. (2012). Harmonious coloring on double star graph families. Tamkang Journal of Mathematics, 43(2), 153–158. https://doi.org/10.5556/j.tkjm.43.2012.153-158
Vernold Vivin, J., & Akbar Ali, M. M. (2009). On harmonious coloring of middle graph of C(Cn), C(K1,n) and C(Pn). Note di Matematica, 29(2), 201–211. https://doi.org/10.1285/i15900932v29n2p201

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2023 Jurnal Matematika Sains dan Teknologi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.