Application of teh Hybrid Singular Spectrum Analysis – ARIMA Model for Indonesia's Inflation Rate (2018-2023)
Keywords: ARIMA, Forecasting, Hybrid, Inflation, SSA
Abstract
This research aims to determine the results and accuracy of forecasting inflation rates in Indonesia using Hybrid Singular Spectrum Analysis (SSA) – Autoregressive Integrated Moving Average (ARIMA). Hybrid SSA-ARIMA combines two time series methods to increase forecasting accuracy, especially for economic data that contains trend and seasonal components. The data used is data on the national consumer price inflation rate (Y-on-Y) for the period January 2018 to December 2023. The forecast accuracy obtained by the MAPE value for Singular Spectrum Analysis was 56.26797%, and Hybrid SSA-ARIMA was 18.88851%. This shows that Hybrid SSA-ARIMA has better forecasting capabilities than Singular Spectrum Analysis in predicting the inflation rate in Indonesia.
Downloads
References
Ahadi, G. D., Nur, N., & Ersela, L. (2023). The Simulation Study of Normality Test Using Kolmogorov-Smirnov, Anderson-Darling, and Shapiro-Wilk. Eigen Mathematics Journal, 6(1).
Aktivani, S. (2020). Uji Stasioneritas Data Inflasi Kota Padang Periode 2014-2019. Statistika, 20(2), 83–90.
Arumsari, M., Wahyuningsih, S., & Siringoringo, M. (2021). Inflation Forecasting for East Kalimantan Province Using Hybrid Singular Spectrum Analysis- Autoregressive Integrated Moving Average Model. Jurnal Matematika, Statistika Dan Komputasi, 18(1), 78–92. https://doi.org/10.20956/j.v18i1.14284
Aswi, & Sukarna. (2006). Analisis Deret Waktu Teori & Aplikasi. Andira Publisher, Makassar.
BI. (2020). Inflasi. Bank Indonesia.
Choirunisa, P., & Kariyam. (2019). Perbandingan Metode Triple Exponential Smoothing Dan Metode Seasonal Arima Untuk Peramalan Inflasi Di Kota Tanjung Pandan. Prosiding Sendika, 5(2), 76. http://eproceedings.umpwr.ac.id/index.php/sendika/article/view/844
Darmawan, G., Rosadi, D., & Ruchjana, B. N. (2022). Hybrid Model of Singular Spectrum Analysis and ARIMA for Seasonal Time Series Data. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 7(2), 302–315. https://doi.org/10.18860/ca.v7i2.14136
Ete, A. A., Suhartno, & Atok, R. M. (2020). SSA and ARIMA for Forecasting Number of Foreign Visitor Arrivals to Indonesia. INFERENSI, 3(1), 55–63.
Fajar, M. (2019). Perbandingan Kinerja Peramalan Pertumbuhan Ekonomi Indonesia dengan ARIMA , SSA dan Hybrid ARIMA-SSA. ResearchGate, 1–7. https://doi.org/10.13140/RG.2.2.28620.26244
Fajar, M., & Rachmad, S. H. (2018). Inflation Forecasting By Hybrid Singular Spectrum Analysis-Multilayer Perceptrons Neural Network Method. ResearchGate, 1–10. https://doi.org/10.13140/RG.2.2.27432.47368
Golyandina, N., Korobeynikov, A., & Zhigljavsky, A. (2018). Singular Spectrum Analysis. https://doi.org/10.1007/978-3-030-26050-7_294-1
Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. (2001). Analysis of Time Series Structure : SSA and Related Techniques. Chapman & Hall/CRC.
Hidayat, K. W., Wahyuningsih, S., & Nasution, Y. N. (2020). Pemodelan Jumlah Titik Panas Di Provinsi Kalimantan Timur Dengan Metode Singular Spectrum Analysis. Jambura Journal of Probability and Statistics, 1(2), 78–88. https://doi.org/10.34312/jjps.v1i2.7287
Idrus, R. A., Ruliana, & Aswi. (2022). Penerapan Metode Singular Spectrum Analysis dalam Peramalan Jumlah Produksi Beras di Kabupaten Gowa. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(2), 49–58. https://doi.org/10.35580/variansiunm40
Irmawati, D. R., Atok, R. M., & Suhartono. (2018). Hybrid singular spectrum analysis-ARIMA modelling for direct and indirect forecasting of Farmer’s Term of Trade in East Java. 2018 International Conference on Information and Communications Technology, ICOIACT 2018, 2018-Janua, 889–894. https://doi.org/10.1109/ICOIACT.2018.8350823
Khaeri, H., Yulian, E., & Darmawan, G. (2018). Penerapan Metode Singular Spectrum Analysis (Ssa) Pada Peramalan Jumlah Penumpang Kereta Api Di Indonesia Tahun 2017. Euclid, 5(1), 8. https://doi.org/10.33603/e.v5i1.496
Makridakis S, Wheelwright SC, H. R. (1997). 1 / the Forecasting Perspective. Forecasting Methods and Applications, 1–632.
Rizki, M. I., & Taqiyyuddin, T. A. (2021). Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia. Jurnal Sains Matematika Dan Statistika, 7(2). https://doi.org/10.24014/jsms.v7i2.13168
Satriani, Nursalam, & Ibnas, R. (2020). Peramalan Indeks Harga Konsumen (IHK) di Sulawesi Selatan dengan Menggunakan Metode Singular Spektrum Analysis (SSA). Jurnal MSA ( Matematika Dan Statistika Serta Aplikasinya ), 8(1), 82. https://doi.org/10.24252/msa.v8i1.17441
Siringoringo, M., Wahyuningsih, S., Purnamasari, I., & Arumsari, M. (2022). Peramalan Jumlah Produksi Kelapa Sawit Provinsi Kalimantan Timur Menggunakan Metode Singular Spectrum Analysis. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 162–172. https://doi.org/10.35580/variansiunm46
Siti, M., Basari, N., & Achmad, A. I. (2019). Metode Singular Spectrum Analysis untuk Meramalkan Indeks Harga Konsumen Indonesia Tahun 2019. Prosiding Statistika, 484–491.
Wulandari, S. S., & Yurinanda, S. (2021). Penerapan Metode ARIMA Dalam Memprediksi Fluktuasi Harga Saham PT Bank Central Asia Tbk. 11, 53–68.
Yunita, T. (2019). Peramalan Jumlah Penggunaan Kuota Internet Menggunakan Metode Autoregressive Integrated Moving Average ( ARIMA ). JOMTA Journal of Mathematics: Theory and Applications, 1(2), 16–22.
Copyright (c) 2024 Jurnal Matematika Sains dan Teknologi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.