Physical Evaluation of Composite Flour Application on Cookies Quality - A Review
DOI:
https://doi.org/10.33830/fsj.v3i1.3696.2023Keywords:
cookies, composite flour, physical evaluation, qualityAbstract
Composite flour is mixture of flour made from tubers, cereals, legumes, and other vegetable base ingredients with or without the addition of wheat flour. The use of various composite flour types in cookies manufacturing is able to reduce the use of wheat flour, provide uniqueness, increase nutritional values, and change physical qualities. The aim of this review is to provide information regarding to the use of composite flour in cookies manufacturing and its effect on physical quality based on several recent studies that was observed. Several studies have shown that the use of composite flour in cookies production results in the changes of physical quality related to weight, weight loss, baking yield, diameter, thickness, spread ratio, color (L*, a*, b*, C*, ΔE, whiteness index, browning index), and texture (hardness, fracturability, cohesiveness, springiness, chewiness, resilience, gumminess). These physical quality changes contribute to different results depending on the type of composite mixture and the percentage of wheat flour or the non-wheat flours. The different nutritional contents also contribute to the physical quality changes of cookies.
References
AACC. (2009). Guidelines for Measurement of Volume by Rapeseed Displacement. In AACC International Approved Methods. https://doi.org/10.1094/aaccintmethod-10-05.01
Adekunle, O. A., & Mary, A. A. (2014). Evaluation of cookies produced from blends of wheat, cassava and cowpea flours. International Journal of Food Studies, 3(2). https://doi.org/10.7455/ijfs/3.2.2014.a4
Ai, Y., Jin, Y., Kelly, J. D., & Ng, P. K. W. (2017). Composition, functional properties, starch digestibility, and cookie-baking performance of dry bean powders from 25 Michigan-grown varieties. Cereal Chemistry, 94(3). https://doi.org/10.1094/CCHEM-04-16-0089-R
Burešová, I., Tokár, M., Mareček, J., Hřivna, L., Faměra, O., & Šottníková, V. (2017). The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. Journal of Cereal Science, 75. https://doi.org/10.1016/j.jcs.2017.04.004
Burey, P., Bhandari, B. R., Rutgers, R. P. G., Halley, P. J., & Torley, P. J. (2009). Confectionery gels: A review on formulation, rheological and structural aspects. International Journal of Food Properties. https://doi.org/10.1080/10942910802223404
Cappa, C., Kelly, J. D., & Ng, P. K. W. (2020). Baking performance of 25 edible dry bean powders: Correlation between cookie quality and rapid test indices. Food Chemistry, 302. https://doi.org/10.1016/j.foodchem.2019.125338
Capriles, V. D., & Arêas, J. A. G. (2014). Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Comprehensive Reviews in Food Science and Food Safety, 13(5). https://doi.org/10.1111/1541-4337.12091
Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-014-1427-2
Cheng, Y. F., & Bhat, R. (2016). Functional, physicochemical and sensory properties of novel cookies produced by utilizing underutilized jering (Pithecellobium jiringa Jack.) legume flour. Food Bioscience, 14. https://doi.org/10.1016/j.fbio.2016.03.002
Culetu, A., Stoica-Guzun, A., & Duta, D. E. (2021). Impact of fat types on the rheological and textural properties of gluten-free oat dough and cookie. International Journal of Food Science and Technology, 56(1). https://doi.org/10.1111/ijfs.14611
Fang, M., Ting, Y. S., & Sung, W. C. (2022). Effects of Sodium Alginate, Pectin and Chitosan Addition on the Physicochemical Properties, Acrylamide Formation and Hydroxymethylfurfural Generation of Air Fried Biscuits. Polymers, 14(19), 3961. https://doi.org/10.3390/POLYM14193961/S1
Ganorkar, P. M., & Jain, R. K. (2020). Effect of flaxseed incorporation on physical, sensorial, textural and chemical attributes of cookies. International Journal of Online and Biomedical Engineering, 21(4).
Gbenga-Fabusiwa, F. J., Oladele, E. P., Oboh, G., Adefegha, S. A., & Oshodi, A. A. (2018). Nutritional properties, sensory qualities and glycemic response of biscuits produced from pigeon pea-wheat composite flour. Journal of Food Biochemistry, 42(4). https://doi.org/10.1111/jfbc.12505
Hager, A. S., & Arendt, E. K. (2013). Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocolloids, 32(1). https://doi.org/10.1016/j.foodhyd.2012.12.021
Hamdani, A. M., Wani, I. A., Gani, A., Bhat, N. A., & Masoodi, F. A. (2017). Effect of gamma irradiation on physicochemical, structural and rheological properties of plant exudate gums. Innovative Food Science and Emerging Technologies, 44. https://doi.org/10.1016/j.ifset.2017.07.014
Hasmadi, M., Noorfarahzilah, M., Noraidah, H., Zainol, M. K., & Jahurul, M. H. A. (2020). Functional properties of composite flour: A review. Food Research. https://doi.org/10.26656/fr.2017.4(6).419
Inglett, G. E., Chen, D., & Liu, S. X. (2015). Physical properties of gluten-free sugar cookies made from amaranth-oat composites. LWT, 63(1). https://doi.org/10.1016/j.lwt.2015.03.056
Jafari, M., Koocheki, A., & Milani, E. (2018). Physicochemical and sensory properties of extruded sorghum–wheat composite bread. Journal of Food Measurement and Characterization, 12(1), 370–377. https://doi.org/10.1007/S11694-017-9649-4/METRICS
Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing your systematic review - Taditional and systematic techniques. International Journal of STEM Education (Vol. 3).
Jose, M., Himashree, P., Sengar, A. S., & Sunil, C. K. (2022). Valorization of food industry by-product (Pineapple Pomace): A study to evaluate its effect on physicochemical and textural properties of developed cookies. Measurement: Food, 6, 100031. https://doi.org/10.1016/J.MEAFOO.2022.100031
Katare, C., Saxena, S., Agrawal, S., & Prasad, G. (2012). Flax Seed: A Potential Medicinal Food. Journal of Nutrition & Food Sciences, 02(01). https://doi.org/10.4172/2155-9600.1000120
Kaur, M., Singh, V., & Kaur, R. (2017). Effect of partial replacement of wheat flour with varying levels of flaxseed flour on physicochemical, antioxidant and sensory characteristics of cookies. Bioactive Carbohydrates and Dietary Fibre, 9. https://doi.org/10.1016/j.bcdf.2016.12.002
Kaur, P., Sharma, P., Kumar, V., Panghal, A., Kaur, J., & Gat, Y. (2019). Effect of addition of flaxseed flour on phytochemical, physicochemical, nutritional, and textural properties of cookies. Journal of the Saudi Society of Agricultural Sciences, 18(4). https://doi.org/10.1016/j.jssas.2017.12.004
Khouryieh, H., & Aramouni, F. (2012). Physical and sensory characteristics of cookies prepared with flaxseed flour. Journal of the Science of Food and Agriculture, 92(11). https://doi.org/10.1002/jsfa.5642
Korese, J. K., Chikpah, S. K., Hensel, O., Pawelzik, E., & Sturm, B. (2021). Effect of orange-fleshed sweet potato flour particle size and degree of wheat flour substitution on physical, nutritional, textural and sensory properties of cookies. European Food Research and Technology, 247(4). https://doi.org/10.1007/s00217-020-03672-z
Ktenioudaki, A., & Gallagher, E. (2012). Recent advances in the development of high-fibre baked products. Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2012.06.004
Laguna, L., Sanz, T., Sahi, S., & Fiszman, S. M. (2014). Role of fibre morphology in some quality features of fibre-enriched biscuits. International Journal of Food Properties, 17(1). https://doi.org/10.1080/10942912.2011.619024
Lassoued, N., Delarue, J., Launay, B., & Michon, C. (2008). Baked product texture: Correlations between instrumental and sensory characterization using Flash Profile. Journal of Cereal Science. https://doi.org/10.1016/j.jcs.2007.08.014
Liu, X., Mu, T., Sun, H., Zhang, M., Chen, J., & Fauconnier, M. L. (2018). Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour. Food Chemistry, 239, 1064–1074. https://doi.org/10.1016/J.FOODCHEM.2017.07.047
Mamat, H., Akanda, J. M. H., Zainol, M. K., & Ling, Y. A. (2018). The Influence of Seaweed Composite Flour on the Physicochemical Properties of Muffin. Journal of Aquatic Food Product Technology, 27(5). https://doi.org/10.1080/10498850.2018.1468841
Mamat, H., Matanjun, P., Ibrahim, S., Siti, S. F., Abdul Hamid, M., & Rameli, A. S. (2014). The effect of seaweed composite flour on the textural properties of dough and bread. Journal of Applied Phycology. https://doi.org/10.1007/s10811-013-0082-8
McWatters, K. H., Ouedraogo, J. B., Resurreccion, A. V. A., Hung, Y. C., & Dixon Phillips, R. (2003). Physical and sensory characteristics of sugar cookies containing mixtures of wheat, fonio (Digitaria exilis) and cowpea (Vigna unguiculata) flours. International Journal of Food Science and Technology, 38(4). https://doi.org/10.1046/j.1365-2621.2003.00716.x
Mihafu, F. D., Issa, J. Y., & Kamiyango, M. W. (2020). Implication of sensory evaluation and quality assessment in food product development: A review. Current Research in Nutrition and Food Science. https://doi.org/10.12944/CRNFSJ.8.3.03
Monthe, O. C., Grosmaire, L., Nguimbou, R. M., Dahdouh, L., Ricci, J., Tran, T., & Ndjouenkeu, R. (2019). Rheological and textural properties of gluten-free doughs and breads based on fermented cassava, sweet potato and sorghum mixed flours. LWT, 101. https://doi.org/10.1016/j.lwt.2018.11.051
Moure, A., Sineiro, J., Domínguez, H., & Parajó, J. C. (2006). Functionality of oilseed protein products: A review. Food Research International. https://doi.org/10.1016/j.foodres.2006.07.002
Mudgil, D., Barak, S., & Khatkar, B. S. (2017a). Cookie texture, spread ratio and sensory acceptability of cookies as a function of soluble dietary fiber, baking time and different water levels. LWT. Elsevier BV. https://doi.org/10.1016/j.lwt.2017.03.009
Mudgil, D., Barak, S., & Khatkar, B. S. (2017b). Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables. Journal of Food Science and Technology. Springer Science and Business Media LLC. https://doi.org/10.1007/s13197-017-2779-1
Naseer, B., Naik, H. R., Hussain, S. Z., Zargar, I., Beenish, Bhat, T. A., & Nazir, N. (2021). Effect of carboxymethyl cellulose and baking conditions on in-vitro starch digestibility and physico-textural characteristics of low glycemic index gluten-free rice cookies. LWT, 141. https://doi.org/10.1016/j.lwt.2021.110885
Noorfarahzilah, M., Lee, J. S., Sharifudin, M. S., Mohd Fadzelly, A. B., & Hasmadi, M. (2014). Applications of composite flour in development of food products. International Food Research Journal. https://doi.org/10.15740/has/ijae/11.sp.issue/65-69
Nyembwe, P. M., de Kock, H. L., & Taylor, J. R. N. (2018). Potential of defatted marama flour-cassava starch composites to produce functional gluten-free bread-type dough. LWT, 92. https://doi.org/10.1016/j.lwt.2018.02.062
Oke, E. K., Idowu, M. A., Sobukola, O. P., & Bakare, H. A. (2019). Quality Attributes and Storage Stability of Bread from Wheat–Tigernut Composite Flour. Journal of Culinary Science and Technology, 17(1). https://doi.org/10.1080/15428052.2017.1404537
Oladunjoye, A. O., Eziama, S. C., & Aderibigbe, O. R. (2021). Proximate composition, physical, sensory and microbial properties of wheat-hog plum bagasse composite cookies. Lwt, 141(January). https://doi.org/10.1016/j.lwt.2021.111038
Oshodi, A. A., & Ekperigin, M. M. (1989). Functional properties of pigeon pea (Cajanus cajan) flour. Food Chemistry, 34(3). https://doi.org/10.1016/0308-8146(89)90139-8
Oyeyinka, S. A., Adepegba, A. A., Oyetunde, T. T., Oyeyinka, A. T., Olaniran, A. F., Iranloye, Y. M., … Njobeh, P. B. (2021). Chemical, antioxidant and sensory properties of pasta from fractionated whole wheat and Bambara groundnut flour. LWT, 138. https://doi.org/10.1016/j.lwt.2020.110618
Oyeyinka, S. A., Ojuko, I. B., Oyeyinka, A. T., Akintayo, O. A., Adebisi, T. T., & Adeloye, A. A. (2018). Physicochemical properties of novel non-gluten cookies from fermented cassava root. Journal of Food Processing and Preservation, 42(11). https://doi.org/10.1111/jfpp.13819
Ozturk, O. K., & Mert, B. (2018). The effects of microfluidization on rheological and textural properties of gluten-free corn breads. Food Research International, 105. https://doi.org/10.1016/j.foodres.2017.12.008
Patel, M. M., & Venkateswara Rao, G. (1995). Effect of Untreated, Roasted and Germinated Black Gram (Phaseolus mungo) Flours on the Physico-chemical and Biscuit (Cookie) Making Characteristics of Soft Wheat Flour. Journal of Cereal Science, 22(3). https://doi.org/10.1006/jcrs.1995.0065
Pragya, S., & Raghuvanshi, R. S. (2012). Finger millet for food and nutritional security. African Journal of Food Science, 6(4). https://doi.org/10.5897/ajfsx10.010
Putri, D. A., Komalasari, H., & Heldiyanti, R. (2022). REVIEW: EVALUASI KUALITAS FISIK ROTI YANG DIPENGARUHI OLEH PENAMBAHAN TEPUNG KOMPOSIT. Journal of Food and Agro-Industry, 3(1), 1–18.
Sarangi, P. K., Singh, N. J., & Singh, T. A. (2020). Pectin from Pineapple Wastes: Isolation and Process Optimization. Int.J.Curr.Microbiol.App.Sci, 9(5), 143–148. https://doi.org/10.20546/ijcmas.2020.905.015
Sarkar, T., Salauddin, M., Kirtonia, K., Pati, S., Rebezov, M., Khayrullin, M., … Lorenzo, J. M. (2022). A Review on the Commonly Used Methods for Analysis of Physical Properties of Food Materials. Applied Sciences (Switzerland). https://doi.org/10.3390/app12042004
Sierra, M., Hernanz, N., & Alonso, I. G. y. L. (2020). Celiac disease. Medicine (Spain), 13(1). https://doi.org/10.1016/j.med.2020.01.002
Sulieman, A. A., Zhu, K. X., Peng, W., Hassan, H. A., Obadi, M., Siddeeg, A., & Zhou, H. M. (2019). Rheological and quality characteristics of composite gluten-free dough and biscuits supplemented with fermented and unfermented Agaricus bisporus polysaccharide flour. Food Chemistry, 271. https://doi.org/10.1016/j.foodchem.2018.07.189
Susanti, S., Bintoro, V. P., Katherinatama, A., & Arifan, F. (2021). Chemical, physical and hedonic characteristics of green tea powder fortified oatmeal cookies. Food Research, 5(5). https://doi.org/10.26656/FR.2017.5(5).633
Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference. https://doi.org/10.1016/S0950-3293(01)00039-8
Tebben, L., Shen, Y., & Li, Y. (2018). Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality. Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2018.08.015
Trinh, T., & Glasgow, S. (2012). On the texture profile analysis test. Quality of Life through Chemical Engineering.
Usman, M., Ahmed, S., Mehmood, A., Bilal, M., Patil, P. J., Akram, K., & Farooq, U. (2020). Effect of apple pomace on nutrition, rheology of dough and cookies quality. Journal of Food Science and Technology, 57(9). https://doi.org/10.1007/s13197-020-04355-z
Wang, L., Li, S., & Gao, Q. (2014). Effect of resistant starch as dietary fiber substitute on cookies quality evaluation. Food Science and Technology Research, 20(2). https://doi.org/10.3136/fstr.20.263
Williams, J. (2018). A Comprehensive Review of Seven Steps to a Comprehensive Literature Review. The Qualitative Report. https://doi.org/10.46743/2160-3715/2018.3374
Wu, T., Wang, L., Li, Y., Qian, H., Liu, L., Tong, L., … Zhou, S. (2019). Effect of milling methods on the properties of rice flour and gluten-free rice bread. LWT, 108. https://doi.org/10.1016/j.lwt.2019.03.050
Xu, H., Lin, Y., Zhang, B., & Tang, X. (2019). <i>Study of Total Volatile Basic Nitrogen (TVB-N) Content in Chilled Beef for Freshness Evaluation by Texture Profile Analysis (TPA) along Different Muscle Fiber Directions</i> 2019 Boston, Massachusetts July 7- July 10, 2019. American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.201900351
Xu, J., Zhang, Y., Wang, W., & Li, Y. (2020). Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends in Food Science and Technology. https://doi.org/10.1016/j.tifs.2020.07.017
Yadav, B. S., Yadav, R. B., Kumari, M., & Khatkar, B. S. (2014). Studies on suitability of wheat flour blends with sweet potato, colocasia and water chestnut flours for noodle making. LWT, 57(1). https://doi.org/10.1016/j.lwt.2013.12.042
Yadav, R. B., Yadav, B. S., & Dhull, N. (2012). Effect of incorporation of plantain and chickpea flours on the quality characteristics of biscuits. Journal of Food Science and Technology, 49(2). https://doi.org/10.1007/s13197-011-0271-x
Yang, L., Wang, S., Zhang, H., Du, C., Li, S., & Yang, J. (2022). Effects of black soybean powder particle size on the characteristics of mixed powder and wheat flour dough. Lwt, 167(June). https://doi.org/10.1016/j.lwt.2022.113834
Yashini, M., Sahana, S., Hemanth, S. D., & Sunil, C. K. (2021). Partially defatted tomato seed flour as a fat replacer: effect on physicochemical and sensory characteristics of millet-based cookies. Journal of Food Science and Technology, 58(12). https://doi.org/10.1007/s13197-020-04936-y
Zambrano-Zaragoza, M. L., Mercado-Silva, E., Del Real L., A., Gutiérrez-Cortez, E., Cornejo-Villegas, M. A., & Quintanar-Guerrero, D. (2014). The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red Delicious” apples. Innovative Food Science and Emerging Technologies, 22. https://doi.org/10.1016/j.ifset.2013.09.008
Zouari, R., Besbes, S., Ellouze-chaabouni, S., & Ghribi-aydi, D. (2016). Cookies from composite wheat – sesame peels flours : Dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. FOOD CHEMISTRY, 194, 758–769. https://doi.org/10.1016/j.foodchem.2015.08.064.
Copyright (c) 2023 Food Scientia: Journal of Food Science and Technology
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.