Analysis of Genetic Structure and Phylogenetic of Lactobacillus plantarum Bacteria Isolated from Food Products

  • Ine Karni Animal Husbandry Department, Universitas Mataram
  • Indah Nalurita Food Technology Department, Universitas Bumigora
  • Kartika Gemma Pravitri Food Technology Department, Universitas Bumigora
  • Muhammad Nizhar Naufali Food Technology Department, Universitas Bumigora
  • Ni Wayan Putu Meikapasa Food Technology Department, Universitas Bumigora

DOI:

https://doi.org/10.33830/fsj.v4i1.6488.2024

Keywords:

phylogenetics, Lactobacillus plantarum, genetic structure

Abstract

Lactobacillus plantarum (L. plantarum) is a type of Lactic Acid Bacteria (LAB) that can convert glucose into lactic acid. L. plantarum can mostly be found in milk, meat, fermented vegetables, and the human digestive tract. The L. plantarum bacteria has several strains, each of which has a good function in food fermentation and health. To understand the historical development of an organism's evolution, it is necessary to use phylogeny as the basis for systematic science in biological evolution. The aim of this research was to determine the genetic structure and level of relationship between L. plantarum bacteria isolated from food products. The data used in this research is secondary data taken from GenBank in the form of nucleotide sequences from the bacterium L. plantarum which were then analyzed using clustal W in the Bioedit application, then genetic and phylogenetic structure analysis was carried out using the MEGA 7 application. The results showed that the probability of substitution was the highest. detected in base G, followed by bases A, T/U, and C. The L. plantarum strain that has the highest level of relationship is the strain with GenBank codes AY424355.1 and AJ640082.1 with a bootsrep value of 99. The resulting phylogenetic tree topology is monophyletic, which means that all members in the group come from a common ancestor who passed on genetic, morphological and biochemical characteristics to his descendants.

References

Anafarida, O., & Badruzsaufari, B. (2020). Analisis Filogenetik Mangga (Mangifera Spp.) Berdasarkan Gen 5, 8s Rrna. Ziraa’ah Majalah Ilmiah Pertanian, 45(2), 120–126.

Astarini, I. A., Ardiana, S. A., Putra, I. N. G., Pertiwi, P. D., Sembiring, A., Yusmalinda, A., & Al Malik, D. (2021). Genetic diversity and phylogenetic of longtail tuna (Thunnus tonggol) landed in Pabean Fish Market, Surabaya. Musamus Fisheries and Marine Journal, 107–115.

Blaiotta, G., Fusco, V., Ercolini, D., Aponte, M., Pepe, O., & Villani, F. (2008). Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation. Applied and Environmental Microbiology, 74(1), 208–215.

Dalié, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2010). Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control, 21(4), 370–380.

Dharmayanti, N. (2011). Filogenetika molekuler: metode taksonomi organisme berdasarkan sejarah evolusi. Wartazoa, 21(1), 1–10.

Fitmawati, F., Suwita, A., Sofiyanti, N., & Herman, H. (2013). Eksplorasi dan Karakterisasi Keanekaragaman Plasma Nutfah Mangga (Mangifera) di Sumatera Tengah. Prosiding SEMIRATA 2013, 1(1).

Hidayatulloh, A., Gumilar, J., & Harlia, E. (2019). Potensi senyawa metabolit yang dihasilkan Lactobacillus plantarum atcc 8014 sebagai bahan biopreservasi dan anti bakteri pada bahan pangan asal hewan. Jitp, 7(2), 1–6.

Juliantari, E., & Sofiyanti, N. (2017). Phylogenetic Study of Mangifera Central Sumatra Based on rbcl Sequences. Applied Science and Technology, 1(1), 126–131.

Junaidi, A., & Wikandari, P. R. (2020). Pengaruh lama fermentasi ekstrak Ubi Jalar Ungu (Ipomoea Batatas) dengan Lactobacillus plantarum B1765 terhadap mutu minuman fermentasi. Unesa Journal of Chemistry, 9(1), 78–82.

Kaźmierczak-Siedlecka, K., Daca, A., Folwarski, M., Witkowski, J. M., Bryl, E., & Makarewicz, W. (2020). The role of Lactobacillus plantarum 299v in supporting treatment of selected diseases. Central European Journal of Immunology, 45(4), 488–493.

Kieronczyk, A., Skeie, S., Langsrud, T., Le Bars, D., & Yvon, M. (2004). The nature of aroma compounds produced in a cheese model by glutamate dehydrogenase positive Lactobacillus INF15D depends on its relative aminotransferase activities towards the different amino acids. International Dairy Journal, 14(3), 227–235.

Lestari, D. A., Azrianingsih, R., & Hendrian, H. (2018). Filogenetik jenis-jenis Annonaceae dari Jawa Timur koleksi Kebun Raya Purwodadi berdasarkan coding dan non-coding sekuen DNA. Journal of Tropical Biodiversity and Biotechnology, 3(1), 1–7.

Mahfut, M. (2020). KORESPONDENSI: APLIKASI FILOGENETIK DI DUNIA BIOLOGI KESEHATAN: MELACAK PANDEMIC PATHOGEN. Teknosains: Media Informasi Sains Dan Teknologi, 14(2).

Mantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2018). Potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods, 8(1), 4.

Pangestika, Y., Budiharjo, A., & Kusumaningrum, H. P. (2015). Analisis filogenetik Curcuma zedoaria (temu putih) berdasarkan gen Internal Transcribed Spacer (ITS). Jurnal Akademika Biologi, 4(4), 8–13.

Rosidiani, E. P., Arumingtyas, E. L., & Azrianingsih, R. (2013). Analisis variasi genetik Amorphophallus muelleri Blume dari berbagai populasi di Jawa Timur berdasarkan sekuen intron trnL. Floribunda, 4(6).

Sohpal, V. K., Dey, A., & Singh, A. (2013). Computational analysis of distance and character based phylogenetic tree for capsid proteins of human herpes virus. Journal of Data Mining in Genomics & Proteomics, 4(2), 128.

Surono, I. S. (2004). Probiotik susu fermentasi dan kesehatan. YAPMMI, Jakarta.

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

Todorov, S. D., Koep, K. S. C., Van Reenen, C. A., Hoffman, L. C., Slinde, E., & Dicks, L. M. T. (2007). Production of salami from beef, horse, mutton, Blesbok (Damaliscus dorcas phillipsi) and Springbok (Antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus. Meat Science, 77(3), 405–412.

van den Nieuwboer, M., van Hemert, S., Claassen, E., & de Vos, W. M. (2016). Lactobacillus plantarum WCFS 1 and its host interaction: a dozen years after the genome. Microbial Biotechnology, 9(4), 452–465.

Vaughn, R. H., Won, W. D., Spencer, F. B., Pappagianis, D., Foda, I. O., & Krumperman, P. H. (1953). Lactobacillus plantarum, the cause of “yeast spots” on olives. Applied Microbiology, 1(2), 82–85.

Wijana, I. M. S., & Mahardika, I. G. N. (2010). Struktur Genetik dan Filogeni Yellowfin Tuna (Thunnus albacares) berdasarkan Sekuen DNA Mitkondria control region sitokrom oksidase I pada diversitas zone biogeografi. Jurnal Bumi Lestari, 10(2), 270–274.

Published
2024-06-24
How to Cite
Karni, I., Nalurita, I., Gemma Pravitri, K., Naufali, M. N., & Meikapasa, N. W. P. (2024). Analysis of Genetic Structure and Phylogenetic of Lactobacillus plantarum Bacteria Isolated from Food Products. Food Scientia: Journal of Food Science and Technology, 4(1), 72–86. https://doi.org/10.33830/fsj.v4i1.6488.2024